Solve for d
d=-1
Share
Copied to clipboard
-12+24d=9\left(2d-2\right)
Use the distributive property to multiply -4 by 3-6d.
-12+24d=18d-18
Use the distributive property to multiply 9 by 2d-2.
-12+24d-18d=-18
Subtract 18d from both sides.
-12+6d=-18
Combine 24d and -18d to get 6d.
6d=-18+12
Add 12 to both sides.
6d=-6
Add -18 and 12 to get -6.
d=\frac{-6}{6}
Divide both sides by 6.
d=-1
Divide -6 by 6 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}