Solve for x
x = \frac{19}{15} = 1\frac{4}{15} \approx 1.266666667
Graph
Share
Copied to clipboard
-8+12x=5-\left(\frac{1}{3}-2x\right)
Use the distributive property to multiply -4 by 2-3x.
-8+12x=5-\frac{1}{3}-\left(-2x\right)
To find the opposite of \frac{1}{3}-2x, find the opposite of each term.
-8+12x=5-\frac{1}{3}+2x
The opposite of -2x is 2x.
-8+12x=\frac{15}{3}-\frac{1}{3}+2x
Convert 5 to fraction \frac{15}{3}.
-8+12x=\frac{15-1}{3}+2x
Since \frac{15}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
-8+12x=\frac{14}{3}+2x
Subtract 1 from 15 to get 14.
-8+12x-2x=\frac{14}{3}
Subtract 2x from both sides.
-8+10x=\frac{14}{3}
Combine 12x and -2x to get 10x.
10x=\frac{14}{3}+8
Add 8 to both sides.
10x=\frac{14}{3}+\frac{24}{3}
Convert 8 to fraction \frac{24}{3}.
10x=\frac{14+24}{3}
Since \frac{14}{3} and \frac{24}{3} have the same denominator, add them by adding their numerators.
10x=\frac{38}{3}
Add 14 and 24 to get 38.
x=\frac{\frac{38}{3}}{10}
Divide both sides by 10.
x=\frac{38}{3\times 10}
Express \frac{\frac{38}{3}}{10} as a single fraction.
x=\frac{38}{30}
Multiply 3 and 10 to get 30.
x=\frac{19}{15}
Reduce the fraction \frac{38}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}