Solve for x
x>\frac{4}{3}
Graph
Share
Copied to clipboard
-4+4x+x>-\left(7-2x\right)+7
Use the distributive property to multiply -4 by 1-x.
-4+5x>-\left(7-2x\right)+7
Combine 4x and x to get 5x.
-4+5x>-7-\left(-2x\right)+7
To find the opposite of 7-2x, find the opposite of each term.
-4+5x>-7+2x+7
The opposite of -2x is 2x.
-4+5x>2x
Add -7 and 7 to get 0.
-4+5x-2x>0
Subtract 2x from both sides.
-4+3x>0
Combine 5x and -2x to get 3x.
3x>4
Add 4 to both sides. Anything plus zero gives itself.
x>\frac{4}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}