Solve for b
b=-4
Share
Copied to clipboard
20+4b=\frac{1}{3}\left(b+16\right)
Use the distributive property to multiply -4 by -5-b.
20+4b=\frac{1}{3}b+\frac{1}{3}\times 16
Use the distributive property to multiply \frac{1}{3} by b+16.
20+4b=\frac{1}{3}b+\frac{16}{3}
Multiply \frac{1}{3} and 16 to get \frac{16}{3}.
20+4b-\frac{1}{3}b=\frac{16}{3}
Subtract \frac{1}{3}b from both sides.
20+\frac{11}{3}b=\frac{16}{3}
Combine 4b and -\frac{1}{3}b to get \frac{11}{3}b.
\frac{11}{3}b=\frac{16}{3}-20
Subtract 20 from both sides.
\frac{11}{3}b=\frac{16}{3}-\frac{60}{3}
Convert 20 to fraction \frac{60}{3}.
\frac{11}{3}b=\frac{16-60}{3}
Since \frac{16}{3} and \frac{60}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{3}b=-\frac{44}{3}
Subtract 60 from 16 to get -44.
b=-\frac{44}{3}\times \frac{3}{11}
Multiply both sides by \frac{3}{11}, the reciprocal of \frac{11}{3}.
b=\frac{-44\times 3}{3\times 11}
Multiply -\frac{44}{3} times \frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
b=\frac{-44}{11}
Cancel out 3 in both numerator and denominator.
b=-4
Divide -44 by 11 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}