Solve for d
d=0
Share
Copied to clipboard
-9d+9d=-3\times \frac{9}{4}d-3d
Multiply -4 times \frac{9}{4}.
0=-3\times \frac{9}{4}d-3d
Combine -9d and 9d to get 0.
0=\frac{-3\times 9}{4}d-3d
Express -3\times \frac{9}{4} as a single fraction.
0=\frac{-27}{4}d-3d
Multiply -3 and 9 to get -27.
0=-\frac{27}{4}d-3d
Fraction \frac{-27}{4} can be rewritten as -\frac{27}{4} by extracting the negative sign.
0=-\frac{39}{4}d
Combine -\frac{27}{4}d and -3d to get -\frac{39}{4}d.
-\frac{39}{4}d=0
Swap sides so that all variable terms are on the left hand side.
d=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -\frac{39}{4} is not equal to 0, d must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}