Solve for y
y = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
Graph
Share
Copied to clipboard
-4\left(\frac{14}{3}-\frac{6}{3}\right)-7y=15
Convert 2 to fraction \frac{6}{3}.
-4\times \frac{14-6}{3}-7y=15
Since \frac{14}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
-4\times \frac{8}{3}-7y=15
Subtract 6 from 14 to get 8.
\frac{-4\times 8}{3}-7y=15
Express -4\times \frac{8}{3} as a single fraction.
\frac{-32}{3}-7y=15
Multiply -4 and 8 to get -32.
-\frac{32}{3}-7y=15
Fraction \frac{-32}{3} can be rewritten as -\frac{32}{3} by extracting the negative sign.
-7y=15+\frac{32}{3}
Add \frac{32}{3} to both sides.
-7y=\frac{45}{3}+\frac{32}{3}
Convert 15 to fraction \frac{45}{3}.
-7y=\frac{45+32}{3}
Since \frac{45}{3} and \frac{32}{3} have the same denominator, add them by adding their numerators.
-7y=\frac{77}{3}
Add 45 and 32 to get 77.
y=\frac{\frac{77}{3}}{-7}
Divide both sides by -7.
y=\frac{77}{3\left(-7\right)}
Express \frac{\frac{77}{3}}{-7} as a single fraction.
y=\frac{77}{-21}
Multiply 3 and -7 to get -21.
y=-\frac{11}{3}
Reduce the fraction \frac{77}{-21} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}