Evaluate
-\frac{44}{15}\approx -2.933333333
Factor
-\frac{44}{15} = -2\frac{14}{15} = -2.933333333333333
Share
Copied to clipboard
\frac{-4\sqrt{\frac{10+1}{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Multiply 2 and 5 to get 10.
\frac{-4\sqrt{\frac{11}{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Add 10 and 1 to get 11.
\frac{-4\times \frac{\sqrt{11}}{\sqrt{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Rewrite the square root of the division \sqrt{\frac{11}{5}} as the division of square roots \frac{\sqrt{11}}{\sqrt{5}}.
\frac{-4\times \frac{\sqrt{11}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{4\times 11+1}{11}}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-4\times \frac{\sqrt{11}\sqrt{5}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
The square of \sqrt{5} is 5.
\frac{-4\times \frac{\sqrt{55}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
To multiply \sqrt{11} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Express -4\times \frac{\sqrt{55}}{5} as a single fraction.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{44+1}{11}}}
Multiply 4 and 11 to get 44.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{45}{11}}}
Add 44 and 1 to get 45.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{\sqrt{45}}{\sqrt{11}}}
Rewrite the square root of the division \sqrt{\frac{45}{11}} as the division of square roots \frac{\sqrt{45}}{\sqrt{11}}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}}{\sqrt{11}}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}}
Rationalize the denominator of \frac{3\sqrt{5}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}\sqrt{11}}{11}}
The square of \sqrt{11} is 11.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{55}}{11}}
To multiply \sqrt{5} and \sqrt{11}, multiply the numbers under the square root.
\frac{-4\sqrt{55}\times 11}{5\times 3\sqrt{55}}
Divide \frac{-4\sqrt{55}}{5} by \frac{3\sqrt{55}}{11} by multiplying \frac{-4\sqrt{55}}{5} by the reciprocal of \frac{3\sqrt{55}}{11}.
\frac{-4\times 11}{3\times 5}
Cancel out \sqrt{55} in both numerator and denominator.
\frac{4\times 11}{-3\times 5}
Cancel out -1 in both numerator and denominator.
\frac{44}{-3\times 5}
Multiply 4 and 11 to get 44.
\frac{44}{-15}
Multiply -3 and 5 to get -15.
-\frac{44}{15}
Fraction \frac{44}{-15} can be rewritten as -\frac{44}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}