Evaluate
-3.5
Factor
-3.5
Share
Copied to clipboard
-\frac{24+1}{6}-\frac{\frac{0.7+2.8}{9}}{-\frac{7}{12}}
Multiply 4 and 6 to get 24.
-\frac{25}{6}-\frac{\frac{0.7+2.8}{9}}{-\frac{7}{12}}
Add 24 and 1 to get 25.
-\frac{25}{6}-\frac{\left(0.7+2.8\right)\times 12}{9\left(-7\right)}
Divide \frac{0.7+2.8}{9} by -\frac{7}{12} by multiplying \frac{0.7+2.8}{9} by the reciprocal of -\frac{7}{12}.
-\frac{25}{6}-\frac{4\left(0.7+2.8\right)}{-7\times 3}
Cancel out 3 in both numerator and denominator.
-\frac{25}{6}-\frac{4\times 3.5}{-7\times 3}
Add 0.7 and 2.8 to get 3.5.
-\frac{25}{6}-\frac{14}{-7\times 3}
Multiply 4 and 3.5 to get 14.
-\frac{25}{6}-\frac{14}{-21}
Multiply -7 and 3 to get -21.
-\frac{25}{6}-\left(-\frac{2}{3}\right)
Reduce the fraction \frac{14}{-21} to lowest terms by extracting and canceling out 7.
-\frac{25}{6}+\frac{2}{3}
The opposite of -\frac{2}{3} is \frac{2}{3}.
-\frac{25}{6}+\frac{4}{6}
Least common multiple of 6 and 3 is 6. Convert -\frac{25}{6} and \frac{2}{3} to fractions with denominator 6.
\frac{-25+4}{6}
Since -\frac{25}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{-21}{6}
Add -25 and 4 to get -21.
-\frac{7}{2}
Reduce the fraction \frac{-21}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}