Solve for x
x=\frac{20\log_{7}\left(2\right)-20}{39}\approx -0.33015016
Solve for x (complex solution)
x=-\frac{i\times 20\pi n_{1}}{39\ln(7)}+\frac{20\log_{7}\left(2\right)}{39}-\frac{20}{39}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
7^{-3.9x}=\frac{-49}{-4}
Divide both sides by -4.
7^{-3.9x}=\frac{49}{4}
Fraction \frac{-49}{-4} can be simplified to \frac{49}{4} by removing the negative sign from both the numerator and the denominator.
\log(7^{-3.9x})=\log(\frac{49}{4})
Take the logarithm of both sides of the equation.
-3.9x\log(7)=\log(\frac{49}{4})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-3.9x=\frac{\log(\frac{49}{4})}{\log(7)}
Divide both sides by \log(7).
-3.9x=\log_{7}\left(\frac{49}{4}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{-2\log_{7}\left(2\right)+2}{-3.9}
Divide both sides of the equation by -3.9, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}