Solve for n
n=\frac{\sqrt{7}+5}{9}\approx 0.849527923
n=\frac{5-\sqrt{7}}{9}\approx 0.261583188
Share
Copied to clipboard
-4=n\left(18\left(n-1\right)-2\right)
Multiply 2 and 9 to get 18.
-4=n\left(18n-18-2\right)
Use the distributive property to multiply 18 by n-1.
-4=n\left(18n-20\right)
Subtract 2 from -18 to get -20.
-4=18n^{2}-20n
Use the distributive property to multiply n by 18n-20.
18n^{2}-20n=-4
Swap sides so that all variable terms are on the left hand side.
18n^{2}-20n+4=0
Add 4 to both sides.
n=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 18\times 4}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -20 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-20\right)±\sqrt{400-4\times 18\times 4}}{2\times 18}
Square -20.
n=\frac{-\left(-20\right)±\sqrt{400-72\times 4}}{2\times 18}
Multiply -4 times 18.
n=\frac{-\left(-20\right)±\sqrt{400-288}}{2\times 18}
Multiply -72 times 4.
n=\frac{-\left(-20\right)±\sqrt{112}}{2\times 18}
Add 400 to -288.
n=\frac{-\left(-20\right)±4\sqrt{7}}{2\times 18}
Take the square root of 112.
n=\frac{20±4\sqrt{7}}{2\times 18}
The opposite of -20 is 20.
n=\frac{20±4\sqrt{7}}{36}
Multiply 2 times 18.
n=\frac{4\sqrt{7}+20}{36}
Now solve the equation n=\frac{20±4\sqrt{7}}{36} when ± is plus. Add 20 to 4\sqrt{7}.
n=\frac{\sqrt{7}+5}{9}
Divide 20+4\sqrt{7} by 36.
n=\frac{20-4\sqrt{7}}{36}
Now solve the equation n=\frac{20±4\sqrt{7}}{36} when ± is minus. Subtract 4\sqrt{7} from 20.
n=\frac{5-\sqrt{7}}{9}
Divide 20-4\sqrt{7} by 36.
n=\frac{\sqrt{7}+5}{9} n=\frac{5-\sqrt{7}}{9}
The equation is now solved.
-4=n\left(18\left(n-1\right)-2\right)
Multiply 2 and 9 to get 18.
-4=n\left(18n-18-2\right)
Use the distributive property to multiply 18 by n-1.
-4=n\left(18n-20\right)
Subtract 2 from -18 to get -20.
-4=18n^{2}-20n
Use the distributive property to multiply n by 18n-20.
18n^{2}-20n=-4
Swap sides so that all variable terms are on the left hand side.
\frac{18n^{2}-20n}{18}=-\frac{4}{18}
Divide both sides by 18.
n^{2}+\left(-\frac{20}{18}\right)n=-\frac{4}{18}
Dividing by 18 undoes the multiplication by 18.
n^{2}-\frac{10}{9}n=-\frac{4}{18}
Reduce the fraction \frac{-20}{18} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{10}{9}n=-\frac{2}{9}
Reduce the fraction \frac{-4}{18} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{10}{9}n+\left(-\frac{5}{9}\right)^{2}=-\frac{2}{9}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{10}{9}n+\frac{25}{81}=-\frac{2}{9}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{10}{9}n+\frac{25}{81}=\frac{7}{81}
Add -\frac{2}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{5}{9}\right)^{2}=\frac{7}{81}
Factor n^{2}-\frac{10}{9}n+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{9}\right)^{2}}=\sqrt{\frac{7}{81}}
Take the square root of both sides of the equation.
n-\frac{5}{9}=\frac{\sqrt{7}}{9} n-\frac{5}{9}=-\frac{\sqrt{7}}{9}
Simplify.
n=\frac{\sqrt{7}+5}{9} n=\frac{5-\sqrt{7}}{9}
Add \frac{5}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}