Solve for m
m=-3p-2
Solve for p
p=\frac{-m-2}{3}
Share
Copied to clipboard
m\times 2+6p=-4
Swap sides so that all variable terms are on the left hand side.
m\times 2=-4-6p
Subtract 6p from both sides.
2m=-6p-4
The equation is in standard form.
\frac{2m}{2}=\frac{-6p-4}{2}
Divide both sides by 2.
m=\frac{-6p-4}{2}
Dividing by 2 undoes the multiplication by 2.
m=-3p-2
Divide -4-6p by 2.
m\times 2+6p=-4
Swap sides so that all variable terms are on the left hand side.
6p=-4-m\times 2
Subtract m\times 2 from both sides.
6p=-4-2m
Multiply -1 and 2 to get -2.
6p=-2m-4
The equation is in standard form.
\frac{6p}{6}=\frac{-2m-4}{6}
Divide both sides by 6.
p=\frac{-2m-4}{6}
Dividing by 6 undoes the multiplication by 6.
p=\frac{-m-2}{3}
Divide -4-2m by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}