Solve for x
x = \frac{\sqrt{23201} + 49}{130} \approx 1.548605729
x=\frac{49-\sqrt{23201}}{130}\approx -0.794759575
Graph
Share
Copied to clipboard
-4\left(2x-1\right)^{2}=\left(1.4x^{2}-18\right)\times 2+\left(2x-1\right)\times 2\times 1.8x
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)^{2}.
-4\left(4x^{2}-4x+1\right)=\left(1.4x^{2}-18\right)\times 2+\left(2x-1\right)\times 2\times 1.8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
-16x^{2}+16x-4=\left(1.4x^{2}-18\right)\times 2+\left(2x-1\right)\times 2\times 1.8x
Use the distributive property to multiply -4 by 4x^{2}-4x+1.
-16x^{2}+16x-4=2.8x^{2}-36+\left(2x-1\right)\times 2\times 1.8x
Use the distributive property to multiply 1.4x^{2}-18 by 2.
-16x^{2}+16x-4=2.8x^{2}-36+\left(2x-1\right)\times 3.6x
Multiply 2 and 1.8 to get 3.6.
-16x^{2}+16x-4=2.8x^{2}-36+\left(7.2x-3.6\right)x
Use the distributive property to multiply 2x-1 by 3.6.
-16x^{2}+16x-4=2.8x^{2}-36+7.2x^{2}-3.6x
Use the distributive property to multiply 7.2x-3.6 by x.
-16x^{2}+16x-4=10x^{2}-36-3.6x
Combine 2.8x^{2} and 7.2x^{2} to get 10x^{2}.
-16x^{2}+16x-4-10x^{2}=-36-3.6x
Subtract 10x^{2} from both sides.
-26x^{2}+16x-4=-36-3.6x
Combine -16x^{2} and -10x^{2} to get -26x^{2}.
-26x^{2}+16x-4-\left(-36\right)=-3.6x
Subtract -36 from both sides.
-26x^{2}+16x-4+36=-3.6x
The opposite of -36 is 36.
-26x^{2}+16x-4+36+3.6x=0
Add 3.6x to both sides.
-26x^{2}+16x+32+3.6x=0
Add -4 and 36 to get 32.
-26x^{2}+19.6x+32=0
Combine 16x and 3.6x to get 19.6x.
x=\frac{-19.6±\sqrt{19.6^{2}-4\left(-26\right)\times 32}}{2\left(-26\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -26 for a, 19.6 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19.6±\sqrt{384.16-4\left(-26\right)\times 32}}{2\left(-26\right)}
Square 19.6 by squaring both the numerator and the denominator of the fraction.
x=\frac{-19.6±\sqrt{384.16+104\times 32}}{2\left(-26\right)}
Multiply -4 times -26.
x=\frac{-19.6±\sqrt{384.16+3328}}{2\left(-26\right)}
Multiply 104 times 32.
x=\frac{-19.6±\sqrt{3712.16}}{2\left(-26\right)}
Add 384.16 to 3328.
x=\frac{-19.6±\frac{2\sqrt{23201}}{5}}{2\left(-26\right)}
Take the square root of 3712.16.
x=\frac{-19.6±\frac{2\sqrt{23201}}{5}}{-52}
Multiply 2 times -26.
x=\frac{2\sqrt{23201}-98}{-52\times 5}
Now solve the equation x=\frac{-19.6±\frac{2\sqrt{23201}}{5}}{-52} when ± is plus. Add -19.6 to \frac{2\sqrt{23201}}{5}.
x=\frac{49-\sqrt{23201}}{130}
Divide \frac{-98+2\sqrt{23201}}{5} by -52.
x=\frac{-2\sqrt{23201}-98}{-52\times 5}
Now solve the equation x=\frac{-19.6±\frac{2\sqrt{23201}}{5}}{-52} when ± is minus. Subtract \frac{2\sqrt{23201}}{5} from -19.6.
x=\frac{\sqrt{23201}+49}{130}
Divide \frac{-98-2\sqrt{23201}}{5} by -52.
x=\frac{49-\sqrt{23201}}{130} x=\frac{\sqrt{23201}+49}{130}
The equation is now solved.
-4\left(2x-1\right)^{2}=\left(1.4x^{2}-18\right)\times 2+\left(2x-1\right)\times 2\times 1.8x
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)^{2}.
-4\left(4x^{2}-4x+1\right)=\left(1.4x^{2}-18\right)\times 2+\left(2x-1\right)\times 2\times 1.8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
-16x^{2}+16x-4=\left(1.4x^{2}-18\right)\times 2+\left(2x-1\right)\times 2\times 1.8x
Use the distributive property to multiply -4 by 4x^{2}-4x+1.
-16x^{2}+16x-4=2.8x^{2}-36+\left(2x-1\right)\times 2\times 1.8x
Use the distributive property to multiply 1.4x^{2}-18 by 2.
-16x^{2}+16x-4=2.8x^{2}-36+\left(2x-1\right)\times 3.6x
Multiply 2 and 1.8 to get 3.6.
-16x^{2}+16x-4=2.8x^{2}-36+\left(7.2x-3.6\right)x
Use the distributive property to multiply 2x-1 by 3.6.
-16x^{2}+16x-4=2.8x^{2}-36+7.2x^{2}-3.6x
Use the distributive property to multiply 7.2x-3.6 by x.
-16x^{2}+16x-4=10x^{2}-36-3.6x
Combine 2.8x^{2} and 7.2x^{2} to get 10x^{2}.
-16x^{2}+16x-4-10x^{2}=-36-3.6x
Subtract 10x^{2} from both sides.
-26x^{2}+16x-4=-36-3.6x
Combine -16x^{2} and -10x^{2} to get -26x^{2}.
-26x^{2}+16x-4+3.6x=-36
Add 3.6x to both sides.
-26x^{2}+19.6x-4=-36
Combine 16x and 3.6x to get 19.6x.
-26x^{2}+19.6x=-36+4
Add 4 to both sides.
-26x^{2}+19.6x=-32
Add -36 and 4 to get -32.
\frac{-26x^{2}+19.6x}{-26}=-\frac{32}{-26}
Divide both sides by -26.
x^{2}+\frac{19.6}{-26}x=-\frac{32}{-26}
Dividing by -26 undoes the multiplication by -26.
x^{2}-\frac{49}{65}x=-\frac{32}{-26}
Divide 19.6 by -26.
x^{2}-\frac{49}{65}x=\frac{16}{13}
Reduce the fraction \frac{-32}{-26} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{49}{65}x+\left(-\frac{49}{130}\right)^{2}=\frac{16}{13}+\left(-\frac{49}{130}\right)^{2}
Divide -\frac{49}{65}, the coefficient of the x term, by 2 to get -\frac{49}{130}. Then add the square of -\frac{49}{130} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{49}{65}x+\frac{2401}{16900}=\frac{16}{13}+\frac{2401}{16900}
Square -\frac{49}{130} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{49}{65}x+\frac{2401}{16900}=\frac{23201}{16900}
Add \frac{16}{13} to \frac{2401}{16900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{49}{130}\right)^{2}=\frac{23201}{16900}
Factor x^{2}-\frac{49}{65}x+\frac{2401}{16900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{130}\right)^{2}}=\sqrt{\frac{23201}{16900}}
Take the square root of both sides of the equation.
x-\frac{49}{130}=\frac{\sqrt{23201}}{130} x-\frac{49}{130}=-\frac{\sqrt{23201}}{130}
Simplify.
x=\frac{\sqrt{23201}+49}{130} x=\frac{49-\sqrt{23201}}{130}
Add \frac{49}{130} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}