Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\frac{16}{4}+\frac{3}{4}-\frac{1}{2}\times 5+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Convert -4 to fraction -\frac{16}{4}.
\frac{-16+3}{4}-\frac{1}{2}\times 5+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Since -\frac{16}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-\frac{13}{4}-\frac{1}{2}\times 5+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Add -16 and 3 to get -13.
-\frac{13}{4}-\frac{5}{2}+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
-\frac{13}{4}-\frac{10}{4}+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Least common multiple of 4 and 2 is 4. Convert -\frac{13}{4} and \frac{5}{2} to fractions with denominator 4.
\frac{-13-10}{4}+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Since -\frac{13}{4} and \frac{10}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{4}+\frac{5}{8}\left(-\frac{2}{15}\right)-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Subtract 10 from -13 to get -23.
-\frac{23}{4}+\frac{5\left(-2\right)}{8\times 15}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Multiply \frac{5}{8} times -\frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
-\frac{23}{4}+\frac{-10}{120}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Do the multiplications in the fraction \frac{5\left(-2\right)}{8\times 15}.
-\frac{23}{4}-\frac{1}{12}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Reduce the fraction \frac{-10}{120} to lowest terms by extracting and canceling out 10.
-\frac{69}{12}-\frac{1}{12}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Least common multiple of 4 and 12 is 12. Convert -\frac{23}{4} and \frac{1}{12} to fractions with denominator 12.
\frac{-69-1}{12}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Since -\frac{69}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-70}{12}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Subtract 1 from -69 to get -70.
-\frac{35}{6}-\frac{3}{2}\left(-\frac{1}{2}+\frac{1}{2}\left(-4\right)\right)
Reduce the fraction \frac{-70}{12} to lowest terms by extracting and canceling out 2.
-\frac{35}{6}-\frac{3}{2}\left(-\frac{1}{2}+\frac{-4}{2}\right)
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
-\frac{35}{6}-\frac{3}{2}\left(-\frac{1}{2}-2\right)
Divide -4 by 2 to get -2.
-\frac{35}{6}-\frac{3}{2}\left(-\frac{1}{2}-\frac{4}{2}\right)
Convert 2 to fraction \frac{4}{2}.
-\frac{35}{6}-\frac{3}{2}\times \frac{-1-4}{2}
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{35}{6}-\frac{3}{2}\left(-\frac{5}{2}\right)
Subtract 4 from -1 to get -5.
-\frac{35}{6}-\frac{3\left(-5\right)}{2\times 2}
Multiply \frac{3}{2} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{35}{6}-\frac{-15}{4}
Do the multiplications in the fraction \frac{3\left(-5\right)}{2\times 2}.
-\frac{35}{6}-\left(-\frac{15}{4}\right)
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
-\frac{35}{6}+\frac{15}{4}
The opposite of -\frac{15}{4} is \frac{15}{4}.
-\frac{70}{12}+\frac{45}{12}
Least common multiple of 6 and 4 is 12. Convert -\frac{35}{6} and \frac{15}{4} to fractions with denominator 12.
\frac{-70+45}{12}
Since -\frac{70}{12} and \frac{45}{12} have the same denominator, add them by adding their numerators.
-\frac{25}{12}
Add -70 and 45 to get -25.