Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-390a-\left(3a+10a^{2}\right)=6
Use the distributive property to multiply 3+10a by a.
-390a-3a-10a^{2}=6
To find the opposite of 3a+10a^{2}, find the opposite of each term.
-393a-10a^{2}=6
Combine -390a and -3a to get -393a.
-393a-10a^{2}-6=0
Subtract 6 from both sides.
-10a^{2}-393a-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-393\right)±\sqrt{\left(-393\right)^{2}-4\left(-10\right)\left(-6\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -393 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-393\right)±\sqrt{154449-4\left(-10\right)\left(-6\right)}}{2\left(-10\right)}
Square -393.
a=\frac{-\left(-393\right)±\sqrt{154449+40\left(-6\right)}}{2\left(-10\right)}
Multiply -4 times -10.
a=\frac{-\left(-393\right)±\sqrt{154449-240}}{2\left(-10\right)}
Multiply 40 times -6.
a=\frac{-\left(-393\right)±\sqrt{154209}}{2\left(-10\right)}
Add 154449 to -240.
a=\frac{393±\sqrt{154209}}{2\left(-10\right)}
The opposite of -393 is 393.
a=\frac{393±\sqrt{154209}}{-20}
Multiply 2 times -10.
a=\frac{\sqrt{154209}+393}{-20}
Now solve the equation a=\frac{393±\sqrt{154209}}{-20} when ± is plus. Add 393 to \sqrt{154209}.
a=\frac{-\sqrt{154209}-393}{20}
Divide 393+\sqrt{154209} by -20.
a=\frac{393-\sqrt{154209}}{-20}
Now solve the equation a=\frac{393±\sqrt{154209}}{-20} when ± is minus. Subtract \sqrt{154209} from 393.
a=\frac{\sqrt{154209}-393}{20}
Divide 393-\sqrt{154209} by -20.
a=\frac{-\sqrt{154209}-393}{20} a=\frac{\sqrt{154209}-393}{20}
The equation is now solved.
-390a-\left(3a+10a^{2}\right)=6
Use the distributive property to multiply 3+10a by a.
-390a-3a-10a^{2}=6
To find the opposite of 3a+10a^{2}, find the opposite of each term.
-393a-10a^{2}=6
Combine -390a and -3a to get -393a.
-10a^{2}-393a=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10a^{2}-393a}{-10}=\frac{6}{-10}
Divide both sides by -10.
a^{2}+\left(-\frac{393}{-10}\right)a=\frac{6}{-10}
Dividing by -10 undoes the multiplication by -10.
a^{2}+\frac{393}{10}a=\frac{6}{-10}
Divide -393 by -10.
a^{2}+\frac{393}{10}a=-\frac{3}{5}
Reduce the fraction \frac{6}{-10} to lowest terms by extracting and canceling out 2.
a^{2}+\frac{393}{10}a+\left(\frac{393}{20}\right)^{2}=-\frac{3}{5}+\left(\frac{393}{20}\right)^{2}
Divide \frac{393}{10}, the coefficient of the x term, by 2 to get \frac{393}{20}. Then add the square of \frac{393}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{393}{10}a+\frac{154449}{400}=-\frac{3}{5}+\frac{154449}{400}
Square \frac{393}{20} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{393}{10}a+\frac{154449}{400}=\frac{154209}{400}
Add -\frac{3}{5} to \frac{154449}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{393}{20}\right)^{2}=\frac{154209}{400}
Factor a^{2}+\frac{393}{10}a+\frac{154449}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{393}{20}\right)^{2}}=\sqrt{\frac{154209}{400}}
Take the square root of both sides of the equation.
a+\frac{393}{20}=\frac{\sqrt{154209}}{20} a+\frac{393}{20}=-\frac{\sqrt{154209}}{20}
Simplify.
a=\frac{\sqrt{154209}-393}{20} a=\frac{-\sqrt{154209}-393}{20}
Subtract \frac{393}{20} from both sides of the equation.