Solve for x
x = \frac{\sqrt{19} + 3}{2} \approx 3.679449472
x=\frac{3-\sqrt{19}}{2}\approx -0.679449472
Graph
Share
Copied to clipboard
-39+4x^{2}-12x+9=2\left(-10\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
-30+4x^{2}-12x=2\left(-10\right)
Add -39 and 9 to get -30.
-30+4x^{2}-12x=-20
Multiply 2 and -10 to get -20.
-30+4x^{2}-12x+20=0
Add 20 to both sides.
-10+4x^{2}-12x=0
Add -30 and 20 to get -10.
4x^{2}-12x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-10\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-10\right)}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-10\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144+160}}{2\times 4}
Multiply -16 times -10.
x=\frac{-\left(-12\right)±\sqrt{304}}{2\times 4}
Add 144 to 160.
x=\frac{-\left(-12\right)±4\sqrt{19}}{2\times 4}
Take the square root of 304.
x=\frac{12±4\sqrt{19}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{19}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{19}+12}{8}
Now solve the equation x=\frac{12±4\sqrt{19}}{8} when ± is plus. Add 12 to 4\sqrt{19}.
x=\frac{\sqrt{19}+3}{2}
Divide 12+4\sqrt{19} by 8.
x=\frac{12-4\sqrt{19}}{8}
Now solve the equation x=\frac{12±4\sqrt{19}}{8} when ± is minus. Subtract 4\sqrt{19} from 12.
x=\frac{3-\sqrt{19}}{2}
Divide 12-4\sqrt{19} by 8.
x=\frac{\sqrt{19}+3}{2} x=\frac{3-\sqrt{19}}{2}
The equation is now solved.
-39+4x^{2}-12x+9=2\left(-10\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
-30+4x^{2}-12x=2\left(-10\right)
Add -39 and 9 to get -30.
-30+4x^{2}-12x=-20
Multiply 2 and -10 to get -20.
4x^{2}-12x=-20+30
Add 30 to both sides.
4x^{2}-12x=10
Add -20 and 30 to get 10.
\frac{4x^{2}-12x}{4}=\frac{10}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{10}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=\frac{10}{4}
Divide -12 by 4.
x^{2}-3x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{19}{4}
Add \frac{5}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{19}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{19}}{2} x-\frac{3}{2}=-\frac{\sqrt{19}}{2}
Simplify.
x=\frac{\sqrt{19}+3}{2} x=\frac{3-\sqrt{19}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}