Solve for x (complex solution)
x=-\sqrt{371}i-1\approx -1-19.261360284i
x=-1+\sqrt{371}i\approx -1+19.261360284i
Graph
Share
Copied to clipboard
-375=x^{2}+2x+1-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-375=x^{2}+2x-3
Subtract 4 from 1 to get -3.
x^{2}+2x-3=-375
Swap sides so that all variable terms are on the left hand side.
x^{2}+2x-3+375=0
Add 375 to both sides.
x^{2}+2x+372=0
Add -3 and 375 to get 372.
x=\frac{-2±\sqrt{2^{2}-4\times 372}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and 372 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 372}}{2}
Square 2.
x=\frac{-2±\sqrt{4-1488}}{2}
Multiply -4 times 372.
x=\frac{-2±\sqrt{-1484}}{2}
Add 4 to -1488.
x=\frac{-2±2\sqrt{371}i}{2}
Take the square root of -1484.
x=\frac{-2+2\sqrt{371}i}{2}
Now solve the equation x=\frac{-2±2\sqrt{371}i}{2} when ± is plus. Add -2 to 2i\sqrt{371}.
x=-1+\sqrt{371}i
Divide -2+2i\sqrt{371} by 2.
x=\frac{-2\sqrt{371}i-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{371}i}{2} when ± is minus. Subtract 2i\sqrt{371} from -2.
x=-\sqrt{371}i-1
Divide -2-2i\sqrt{371} by 2.
x=-1+\sqrt{371}i x=-\sqrt{371}i-1
The equation is now solved.
-375=x^{2}+2x+1-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-375=x^{2}+2x-3
Subtract 4 from 1 to get -3.
x^{2}+2x-3=-375
Swap sides so that all variable terms are on the left hand side.
x^{2}+2x=-375+3
Add 3 to both sides.
x^{2}+2x=-372
Add -375 and 3 to get -372.
x^{2}+2x+1^{2}=-372+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-372+1
Square 1.
x^{2}+2x+1=-371
Add -372 to 1.
\left(x+1\right)^{2}=-371
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-371}
Take the square root of both sides of the equation.
x+1=\sqrt{371}i x+1=-\sqrt{371}i
Simplify.
x=-1+\sqrt{371}i x=-\sqrt{371}i-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}