Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

-36z^{2}=5
Add 5 to both sides. Anything plus zero gives itself.
z^{2}=-\frac{5}{36}
Divide both sides by -36.
z=\frac{\sqrt{5}i}{6} z=-\frac{\sqrt{5}i}{6}
The equation is now solved.
-36z^{2}-5=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-36\right)\left(-5\right)}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, 0 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-36\right)\left(-5\right)}}{2\left(-36\right)}
Square 0.
z=\frac{0±\sqrt{144\left(-5\right)}}{2\left(-36\right)}
Multiply -4 times -36.
z=\frac{0±\sqrt{-720}}{2\left(-36\right)}
Multiply 144 times -5.
z=\frac{0±12\sqrt{5}i}{2\left(-36\right)}
Take the square root of -720.
z=\frac{0±12\sqrt{5}i}{-72}
Multiply 2 times -36.
z=-\frac{\sqrt{5}i}{6}
Now solve the equation z=\frac{0±12\sqrt{5}i}{-72} when ± is plus.
z=\frac{\sqrt{5}i}{6}
Now solve the equation z=\frac{0±12\sqrt{5}i}{-72} when ± is minus.
z=-\frac{\sqrt{5}i}{6} z=\frac{\sqrt{5}i}{6}
The equation is now solved.