Evaluate
3\left(b-3a\right)
Expand
3b-9a
Share
Copied to clipboard
-36\left(\frac{3a}{12}-\frac{b}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 12 is 12. Multiply \frac{a}{4} times \frac{3}{3}.
-36\times \frac{3a-b}{12}
Since \frac{3a}{12} and \frac{b}{12} have the same denominator, subtract them by subtracting their numerators.
-3\left(3a-b\right)
Cancel out 12, the greatest common factor in 36 and 12.
-9a+3b
Use the distributive property to multiply -3 by 3a-b.
-36\left(\frac{3a}{12}-\frac{b}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 12 is 12. Multiply \frac{a}{4} times \frac{3}{3}.
-36\times \frac{3a-b}{12}
Since \frac{3a}{12} and \frac{b}{12} have the same denominator, subtract them by subtracting their numerators.
-3\left(3a-b\right)
Cancel out 12, the greatest common factor in 36 and 12.
-9a+3b
Use the distributive property to multiply -3 by 3a-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}