Solve for t
t=-1
t=\frac{2}{7}\approx 0.285714286
Share
Copied to clipboard
-35t-49t^{2}=-14
Multiply \frac{1}{2} and 98 to get 49.
-35t-49t^{2}+14=0
Add 14 to both sides.
-5t-7t^{2}+2=0
Divide both sides by 7.
-7t^{2}-5t+2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-5 ab=-7\times 2=-14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -7t^{2}+at+bt+2. To find a and b, set up a system to be solved.
1,-14 2,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -14.
1-14=-13 2-7=-5
Calculate the sum for each pair.
a=2 b=-7
The solution is the pair that gives sum -5.
\left(-7t^{2}+2t\right)+\left(-7t+2\right)
Rewrite -7t^{2}-5t+2 as \left(-7t^{2}+2t\right)+\left(-7t+2\right).
-t\left(7t-2\right)-\left(7t-2\right)
Factor out -t in the first and -1 in the second group.
\left(7t-2\right)\left(-t-1\right)
Factor out common term 7t-2 by using distributive property.
t=\frac{2}{7} t=-1
To find equation solutions, solve 7t-2=0 and -t-1=0.
-35t-49t^{2}=-14
Multiply \frac{1}{2} and 98 to get 49.
-35t-49t^{2}+14=0
Add 14 to both sides.
-49t^{2}-35t+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\left(-49\right)\times 14}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, -35 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-35\right)±\sqrt{1225-4\left(-49\right)\times 14}}{2\left(-49\right)}
Square -35.
t=\frac{-\left(-35\right)±\sqrt{1225+196\times 14}}{2\left(-49\right)}
Multiply -4 times -49.
t=\frac{-\left(-35\right)±\sqrt{1225+2744}}{2\left(-49\right)}
Multiply 196 times 14.
t=\frac{-\left(-35\right)±\sqrt{3969}}{2\left(-49\right)}
Add 1225 to 2744.
t=\frac{-\left(-35\right)±63}{2\left(-49\right)}
Take the square root of 3969.
t=\frac{35±63}{2\left(-49\right)}
The opposite of -35 is 35.
t=\frac{35±63}{-98}
Multiply 2 times -49.
t=\frac{98}{-98}
Now solve the equation t=\frac{35±63}{-98} when ± is plus. Add 35 to 63.
t=-1
Divide 98 by -98.
t=-\frac{28}{-98}
Now solve the equation t=\frac{35±63}{-98} when ± is minus. Subtract 63 from 35.
t=\frac{2}{7}
Reduce the fraction \frac{-28}{-98} to lowest terms by extracting and canceling out 14.
t=-1 t=\frac{2}{7}
The equation is now solved.
-35t-49t^{2}=-14
Multiply \frac{1}{2} and 98 to get 49.
-49t^{2}-35t=-14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-49t^{2}-35t}{-49}=-\frac{14}{-49}
Divide both sides by -49.
t^{2}+\left(-\frac{35}{-49}\right)t=-\frac{14}{-49}
Dividing by -49 undoes the multiplication by -49.
t^{2}+\frac{5}{7}t=-\frac{14}{-49}
Reduce the fraction \frac{-35}{-49} to lowest terms by extracting and canceling out 7.
t^{2}+\frac{5}{7}t=\frac{2}{7}
Reduce the fraction \frac{-14}{-49} to lowest terms by extracting and canceling out 7.
t^{2}+\frac{5}{7}t+\left(\frac{5}{14}\right)^{2}=\frac{2}{7}+\left(\frac{5}{14}\right)^{2}
Divide \frac{5}{7}, the coefficient of the x term, by 2 to get \frac{5}{14}. Then add the square of \frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{5}{7}t+\frac{25}{196}=\frac{2}{7}+\frac{25}{196}
Square \frac{5}{14} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{5}{7}t+\frac{25}{196}=\frac{81}{196}
Add \frac{2}{7} to \frac{25}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{5}{14}\right)^{2}=\frac{81}{196}
Factor t^{2}+\frac{5}{7}t+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{14}\right)^{2}}=\sqrt{\frac{81}{196}}
Take the square root of both sides of the equation.
t+\frac{5}{14}=\frac{9}{14} t+\frac{5}{14}=-\frac{9}{14}
Simplify.
t=\frac{2}{7} t=-1
Subtract \frac{5}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}