Evaluate
\frac{30701}{50}=614.02
Factor
\frac{11 \cdot 2791}{2 \cdot 5 ^ {2}} = 614\frac{1}{50} = 614.02
Share
Copied to clipboard
\frac{-\frac{800+16}{25}}{-8\times 4}+25^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Multiply 32 and 25 to get 800.
\frac{-\frac{816}{25}}{-8\times 4}+25^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Add 800 and 16 to get 816.
\frac{-\frac{816}{25}}{-32}+25^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Multiply -8 and 4 to get -32.
\frac{-816}{25\left(-32\right)}+25^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Express \frac{-\frac{816}{25}}{-32} as a single fraction.
\frac{-816}{-800}+25^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Multiply 25 and -32 to get -800.
\frac{51}{50}+25^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Reduce the fraction \frac{-816}{-800} to lowest terms by extracting and canceling out -16.
\frac{51}{50}+625+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Calculate 25 to the power of 2 and get 625.
\frac{51}{50}+\frac{31250}{50}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Convert 625 to fraction \frac{31250}{50}.
\frac{51+31250}{50}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Since \frac{51}{50} and \frac{31250}{50} have the same denominator, add them by adding their numerators.
\frac{31301}{50}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Add 51 and 31250 to get 31301.
\frac{31301}{50}+\left(\frac{3}{6}+\frac{4}{6}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{31301}{50}+\left(\frac{3+4}{6}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{31301}{50}+\left(\frac{7}{6}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Add 3 and 4 to get 7.
\frac{31301}{50}+\left(\frac{14}{12}-\frac{9}{12}-\frac{11}{12}\right)\times 24
Least common multiple of 6 and 4 is 12. Convert \frac{7}{6} and \frac{3}{4} to fractions with denominator 12.
\frac{31301}{50}+\left(\frac{14-9}{12}-\frac{11}{12}\right)\times 24
Since \frac{14}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{31301}{50}+\left(\frac{5}{12}-\frac{11}{12}\right)\times 24
Subtract 9 from 14 to get 5.
\frac{31301}{50}+\frac{5-11}{12}\times 24
Since \frac{5}{12} and \frac{11}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{31301}{50}+\frac{-6}{12}\times 24
Subtract 11 from 5 to get -6.
\frac{31301}{50}-\frac{1}{2}\times 24
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
\frac{31301}{50}+\frac{-24}{2}
Express -\frac{1}{2}\times 24 as a single fraction.
\frac{31301}{50}-12
Divide -24 by 2 to get -12.
\frac{31301}{50}-\frac{600}{50}
Convert 12 to fraction \frac{600}{50}.
\frac{31301-600}{50}
Since \frac{31301}{50} and \frac{600}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{30701}{50}
Subtract 600 from 31301 to get 30701.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}