Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. j
Tick mark Image

Similar Problems from Web Search

Share

\frac{-3000\times 61}{3+j}j
Express -3000\times \frac{61}{3+j} as a single fraction.
\frac{-183000}{3+j}j
Multiply -3000 and 61 to get -183000.
\frac{-183000j}{3+j}
Express \frac{-183000}{3+j}j as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}j}(\frac{-3000\times 61}{3+j}j)
Express -3000\times \frac{61}{3+j} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}j}(\frac{-183000}{3+j}j)
Multiply -3000 and 61 to get -183000.
\frac{\mathrm{d}}{\mathrm{d}j}(\frac{-183000j}{3+j})
Express \frac{-183000}{3+j}j as a single fraction.
\frac{\left(j^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}j}(-183000j^{1})-\left(-183000j^{1}\frac{\mathrm{d}}{\mathrm{d}j}(j^{1}+3)\right)}{\left(j^{1}+3\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(j^{1}+3\right)\left(-183000\right)j^{1-1}-\left(-183000j^{1}j^{1-1}\right)}{\left(j^{1}+3\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(j^{1}+3\right)\left(-183000\right)j^{0}-\left(-183000j^{1}j^{0}\right)}{\left(j^{1}+3\right)^{2}}
Do the arithmetic.
\frac{j^{1}\left(-183000\right)j^{0}+3\left(-183000\right)j^{0}-\left(-183000j^{1}j^{0}\right)}{\left(j^{1}+3\right)^{2}}
Expand using distributive property.
\frac{-183000j^{1}+3\left(-183000\right)j^{0}-\left(-183000j^{1}\right)}{\left(j^{1}+3\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-183000j^{1}-549000j^{0}-\left(-183000j^{1}\right)}{\left(j^{1}+3\right)^{2}}
Do the arithmetic.
\frac{\left(-183000-\left(-183000\right)\right)j^{1}-549000j^{0}}{\left(j^{1}+3\right)^{2}}
Combine like terms.
\frac{-549000j^{0}}{\left(j^{1}+3\right)^{2}}
Subtract -183000 from -183000.
\frac{-549000j^{0}}{\left(j+3\right)^{2}}
For any term t, t^{1}=t.
\frac{-549000}{\left(j+3\right)^{2}}
For any term t except 0, t^{0}=1.