Solve for w
w = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Share
Copied to clipboard
-30w-25-9w^{2}=0
Subtract 9w^{2} from both sides.
-9w^{2}-30w-25=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-30 ab=-9\left(-25\right)=225
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9w^{2}+aw+bw-25. To find a and b, set up a system to be solved.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Calculate the sum for each pair.
a=-15 b=-15
The solution is the pair that gives sum -30.
\left(-9w^{2}-15w\right)+\left(-15w-25\right)
Rewrite -9w^{2}-30w-25 as \left(-9w^{2}-15w\right)+\left(-15w-25\right).
3w\left(-3w-5\right)+5\left(-3w-5\right)
Factor out 3w in the first and 5 in the second group.
\left(-3w-5\right)\left(3w+5\right)
Factor out common term -3w-5 by using distributive property.
w=-\frac{5}{3} w=-\frac{5}{3}
To find equation solutions, solve -3w-5=0 and 3w+5=0.
-30w-25-9w^{2}=0
Subtract 9w^{2} from both sides.
-9w^{2}-30w-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\left(-9\right)\left(-25\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -30 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-30\right)±\sqrt{900-4\left(-9\right)\left(-25\right)}}{2\left(-9\right)}
Square -30.
w=\frac{-\left(-30\right)±\sqrt{900+36\left(-25\right)}}{2\left(-9\right)}
Multiply -4 times -9.
w=\frac{-\left(-30\right)±\sqrt{900-900}}{2\left(-9\right)}
Multiply 36 times -25.
w=\frac{-\left(-30\right)±\sqrt{0}}{2\left(-9\right)}
Add 900 to -900.
w=-\frac{-30}{2\left(-9\right)}
Take the square root of 0.
w=\frac{30}{2\left(-9\right)}
The opposite of -30 is 30.
w=\frac{30}{-18}
Multiply 2 times -9.
w=-\frac{5}{3}
Reduce the fraction \frac{30}{-18} to lowest terms by extracting and canceling out 6.
-30w-25-9w^{2}=0
Subtract 9w^{2} from both sides.
-30w-9w^{2}=25
Add 25 to both sides. Anything plus zero gives itself.
-9w^{2}-30w=25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9w^{2}-30w}{-9}=\frac{25}{-9}
Divide both sides by -9.
w^{2}+\left(-\frac{30}{-9}\right)w=\frac{25}{-9}
Dividing by -9 undoes the multiplication by -9.
w^{2}+\frac{10}{3}w=\frac{25}{-9}
Reduce the fraction \frac{-30}{-9} to lowest terms by extracting and canceling out 3.
w^{2}+\frac{10}{3}w=-\frac{25}{9}
Divide 25 by -9.
w^{2}+\frac{10}{3}w+\left(\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\frac{10}{3}w+\frac{25}{9}=\frac{-25+25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
w^{2}+\frac{10}{3}w+\frac{25}{9}=0
Add -\frac{25}{9} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(w+\frac{5}{3}\right)^{2}=0
Factor w^{2}+\frac{10}{3}w+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{5}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
w+\frac{5}{3}=0 w+\frac{5}{3}=0
Simplify.
w=-\frac{5}{3} w=-\frac{5}{3}
Subtract \frac{5}{3} from both sides of the equation.
w=-\frac{5}{3}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}