Solve for a
a\geq 16
Share
Copied to clipboard
-0.3a+1.2\leq -3.6
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-0.3a\leq -3.6-1.2
Subtract 1.2 from both sides.
-0.3a\leq -4.8
Subtract 1.2 from -3.6 to get -4.8.
a\geq \frac{-4.8}{-0.3}
Divide both sides by -0.3. Since -0.3 is negative, the inequality direction is changed.
a\geq \frac{-48}{-3}
Expand \frac{-4.8}{-0.3} by multiplying both numerator and the denominator by 10.
a\geq 16
Divide -48 by -3 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}