Solve for n
n=\log_{15}\left(\frac{760}{33}\right)\approx 1.158328184
Solve for n (complex solution)
n=\frac{i\times 2\pi n_{1}}{\ln(15)}+\log_{15}\left(\frac{760}{33}\right)
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
15^{n}=\frac{-76}{-3.3}
Divide both sides by -3.3.
15^{n}=\frac{-760}{-33}
Expand \frac{-76}{-3.3} by multiplying both numerator and the denominator by 10.
15^{n}=\frac{760}{33}
Fraction \frac{-760}{-33} can be simplified to \frac{760}{33} by removing the negative sign from both the numerator and the denominator.
\log(15^{n})=\log(\frac{760}{33})
Take the logarithm of both sides of the equation.
n\log(15)=\log(\frac{760}{33})
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(\frac{760}{33})}{\log(15)}
Divide both sides by \log(15).
n=\log_{15}\left(\frac{760}{33}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}