Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3y^{2}-4y+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square -4.
y=\frac{-\left(-4\right)±\sqrt{16+12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
y=\frac{-\left(-4\right)±\sqrt{16+144}}{2\left(-3\right)}
Multiply 12 times 12.
y=\frac{-\left(-4\right)±\sqrt{160}}{2\left(-3\right)}
Add 16 to 144.
y=\frac{-\left(-4\right)±4\sqrt{10}}{2\left(-3\right)}
Take the square root of 160.
y=\frac{4±4\sqrt{10}}{2\left(-3\right)}
The opposite of -4 is 4.
y=\frac{4±4\sqrt{10}}{-6}
Multiply 2 times -3.
y=\frac{4\sqrt{10}+4}{-6}
Now solve the equation y=\frac{4±4\sqrt{10}}{-6} when ± is plus. Add 4 to 4\sqrt{10}.
y=\frac{-2\sqrt{10}-2}{3}
Divide 4+4\sqrt{10} by -6.
y=\frac{4-4\sqrt{10}}{-6}
Now solve the equation y=\frac{4±4\sqrt{10}}{-6} when ± is minus. Subtract 4\sqrt{10} from 4.
y=\frac{2\sqrt{10}-2}{3}
Divide 4-4\sqrt{10} by -6.
-3y^{2}-4y+12=-3\left(y-\frac{-2\sqrt{10}-2}{3}\right)\left(y-\frac{2\sqrt{10}-2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-2-2\sqrt{10}}{3} for x_{1} and \frac{-2+2\sqrt{10}}{3} for x_{2}.
x ^ 2 +\frac{4}{3}x -4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{4}{3} rs = -4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{2}{3} - u s = -\frac{2}{3} + u
Two numbers r and s sum up to -\frac{4}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{4}{3} = -\frac{2}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{2}{3} - u) (-\frac{2}{3} + u) = -4
To solve for unknown quantity u, substitute these in the product equation rs = -4
\frac{4}{9} - u^2 = -4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4-\frac{4}{9} = -\frac{40}{9}
Simplify the expression by subtracting \frac{4}{9} on both sides
u^2 = \frac{40}{9} u = \pm\sqrt{\frac{40}{9}} = \pm \frac{\sqrt{40}}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{2}{3} - \frac{\sqrt{40}}{3} = -2.775 s = -\frac{2}{3} + \frac{\sqrt{40}}{3} = 1.442
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.