Solve for y
y=\frac{-\sqrt{11}i+8}{3}\approx 2.666666667-1.105541597i
y=\frac{8+\sqrt{11}i}{3}\approx 2.666666667+1.105541597i
Share
Copied to clipboard
-3y^{2}+16y-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-16±\sqrt{16^{2}-4\left(-3\right)\left(-25\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 16 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-16±\sqrt{256-4\left(-3\right)\left(-25\right)}}{2\left(-3\right)}
Square 16.
y=\frac{-16±\sqrt{256+12\left(-25\right)}}{2\left(-3\right)}
Multiply -4 times -3.
y=\frac{-16±\sqrt{256-300}}{2\left(-3\right)}
Multiply 12 times -25.
y=\frac{-16±\sqrt{-44}}{2\left(-3\right)}
Add 256 to -300.
y=\frac{-16±2\sqrt{11}i}{2\left(-3\right)}
Take the square root of -44.
y=\frac{-16±2\sqrt{11}i}{-6}
Multiply 2 times -3.
y=\frac{-16+2\sqrt{11}i}{-6}
Now solve the equation y=\frac{-16±2\sqrt{11}i}{-6} when ± is plus. Add -16 to 2i\sqrt{11}.
y=\frac{-\sqrt{11}i+8}{3}
Divide -16+2i\sqrt{11} by -6.
y=\frac{-2\sqrt{11}i-16}{-6}
Now solve the equation y=\frac{-16±2\sqrt{11}i}{-6} when ± is minus. Subtract 2i\sqrt{11} from -16.
y=\frac{8+\sqrt{11}i}{3}
Divide -16-2i\sqrt{11} by -6.
y=\frac{-\sqrt{11}i+8}{3} y=\frac{8+\sqrt{11}i}{3}
The equation is now solved.
-3y^{2}+16y-25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3y^{2}+16y-25-\left(-25\right)=-\left(-25\right)
Add 25 to both sides of the equation.
-3y^{2}+16y=-\left(-25\right)
Subtracting -25 from itself leaves 0.
-3y^{2}+16y=25
Subtract -25 from 0.
\frac{-3y^{2}+16y}{-3}=\frac{25}{-3}
Divide both sides by -3.
y^{2}+\frac{16}{-3}y=\frac{25}{-3}
Dividing by -3 undoes the multiplication by -3.
y^{2}-\frac{16}{3}y=\frac{25}{-3}
Divide 16 by -3.
y^{2}-\frac{16}{3}y=-\frac{25}{3}
Divide 25 by -3.
y^{2}-\frac{16}{3}y+\left(-\frac{8}{3}\right)^{2}=-\frac{25}{3}+\left(-\frac{8}{3}\right)^{2}
Divide -\frac{16}{3}, the coefficient of the x term, by 2 to get -\frac{8}{3}. Then add the square of -\frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{16}{3}y+\frac{64}{9}=-\frac{25}{3}+\frac{64}{9}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{16}{3}y+\frac{64}{9}=-\frac{11}{9}
Add -\frac{25}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{8}{3}\right)^{2}=-\frac{11}{9}
Factor y^{2}-\frac{16}{3}y+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{8}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Take the square root of both sides of the equation.
y-\frac{8}{3}=\frac{\sqrt{11}i}{3} y-\frac{8}{3}=-\frac{\sqrt{11}i}{3}
Simplify.
y=\frac{8+\sqrt{11}i}{3} y=\frac{-\sqrt{11}i+8}{3}
Add \frac{8}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}