Solve for y
y=\frac{\sqrt{39}}{3}-1\approx 1.081665999
y=-\frac{\sqrt{39}}{3}-1\approx -3.081665999
Graph
Share
Copied to clipboard
-3y^{2}-6y=-10
Subtract 6y from both sides.
-3y^{2}-6y+10=0
Add 10 to both sides.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -6 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 10}}{2\left(-3\right)}
Square -6.
y=\frac{-\left(-6\right)±\sqrt{36+12\times 10}}{2\left(-3\right)}
Multiply -4 times -3.
y=\frac{-\left(-6\right)±\sqrt{36+120}}{2\left(-3\right)}
Multiply 12 times 10.
y=\frac{-\left(-6\right)±\sqrt{156}}{2\left(-3\right)}
Add 36 to 120.
y=\frac{-\left(-6\right)±2\sqrt{39}}{2\left(-3\right)}
Take the square root of 156.
y=\frac{6±2\sqrt{39}}{2\left(-3\right)}
The opposite of -6 is 6.
y=\frac{6±2\sqrt{39}}{-6}
Multiply 2 times -3.
y=\frac{2\sqrt{39}+6}{-6}
Now solve the equation y=\frac{6±2\sqrt{39}}{-6} when ± is plus. Add 6 to 2\sqrt{39}.
y=-\frac{\sqrt{39}}{3}-1
Divide 6+2\sqrt{39} by -6.
y=\frac{6-2\sqrt{39}}{-6}
Now solve the equation y=\frac{6±2\sqrt{39}}{-6} when ± is minus. Subtract 2\sqrt{39} from 6.
y=\frac{\sqrt{39}}{3}-1
Divide 6-2\sqrt{39} by -6.
y=-\frac{\sqrt{39}}{3}-1 y=\frac{\sqrt{39}}{3}-1
The equation is now solved.
-3y^{2}-6y=-10
Subtract 6y from both sides.
\frac{-3y^{2}-6y}{-3}=-\frac{10}{-3}
Divide both sides by -3.
y^{2}+\left(-\frac{6}{-3}\right)y=-\frac{10}{-3}
Dividing by -3 undoes the multiplication by -3.
y^{2}+2y=-\frac{10}{-3}
Divide -6 by -3.
y^{2}+2y=\frac{10}{3}
Divide -10 by -3.
y^{2}+2y+1^{2}=\frac{10}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+2y+1=\frac{10}{3}+1
Square 1.
y^{2}+2y+1=\frac{13}{3}
Add \frac{10}{3} to 1.
\left(y+1\right)^{2}=\frac{13}{3}
Factor y^{2}+2y+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+1\right)^{2}}=\sqrt{\frac{13}{3}}
Take the square root of both sides of the equation.
y+1=\frac{\sqrt{39}}{3} y+1=-\frac{\sqrt{39}}{3}
Simplify.
y=\frac{\sqrt{39}}{3}-1 y=-\frac{\sqrt{39}}{3}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}