Solve for x
x = -\frac{35}{4} = -8\frac{3}{4} = -8.75
x=-5
Graph
Share
Copied to clipboard
-3x-6-4x^{2}=169+52x
Subtract 4x^{2} from both sides.
-3x-6-4x^{2}-169=52x
Subtract 169 from both sides.
-3x-175-4x^{2}=52x
Subtract 169 from -6 to get -175.
-3x-175-4x^{2}-52x=0
Subtract 52x from both sides.
-55x-175-4x^{2}=0
Combine -3x and -52x to get -55x.
-4x^{2}-55x-175=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-55 ab=-4\left(-175\right)=700
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx-175. To find a and b, set up a system to be solved.
-1,-700 -2,-350 -4,-175 -5,-140 -7,-100 -10,-70 -14,-50 -20,-35 -25,-28
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 700.
-1-700=-701 -2-350=-352 -4-175=-179 -5-140=-145 -7-100=-107 -10-70=-80 -14-50=-64 -20-35=-55 -25-28=-53
Calculate the sum for each pair.
a=-20 b=-35
The solution is the pair that gives sum -55.
\left(-4x^{2}-20x\right)+\left(-35x-175\right)
Rewrite -4x^{2}-55x-175 as \left(-4x^{2}-20x\right)+\left(-35x-175\right).
4x\left(-x-5\right)+35\left(-x-5\right)
Factor out 4x in the first and 35 in the second group.
\left(-x-5\right)\left(4x+35\right)
Factor out common term -x-5 by using distributive property.
x=-5 x=-\frac{35}{4}
To find equation solutions, solve -x-5=0 and 4x+35=0.
-3x-6-4x^{2}=169+52x
Subtract 4x^{2} from both sides.
-3x-6-4x^{2}-169=52x
Subtract 169 from both sides.
-3x-175-4x^{2}=52x
Subtract 169 from -6 to get -175.
-3x-175-4x^{2}-52x=0
Subtract 52x from both sides.
-55x-175-4x^{2}=0
Combine -3x and -52x to get -55x.
-4x^{2}-55x-175=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-4\right)\left(-175\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -55 for b, and -175 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-4\right)\left(-175\right)}}{2\left(-4\right)}
Square -55.
x=\frac{-\left(-55\right)±\sqrt{3025+16\left(-175\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-55\right)±\sqrt{3025-2800}}{2\left(-4\right)}
Multiply 16 times -175.
x=\frac{-\left(-55\right)±\sqrt{225}}{2\left(-4\right)}
Add 3025 to -2800.
x=\frac{-\left(-55\right)±15}{2\left(-4\right)}
Take the square root of 225.
x=\frac{55±15}{2\left(-4\right)}
The opposite of -55 is 55.
x=\frac{55±15}{-8}
Multiply 2 times -4.
x=\frac{70}{-8}
Now solve the equation x=\frac{55±15}{-8} when ± is plus. Add 55 to 15.
x=-\frac{35}{4}
Reduce the fraction \frac{70}{-8} to lowest terms by extracting and canceling out 2.
x=\frac{40}{-8}
Now solve the equation x=\frac{55±15}{-8} when ± is minus. Subtract 15 from 55.
x=-5
Divide 40 by -8.
x=-\frac{35}{4} x=-5
The equation is now solved.
-3x-6-4x^{2}=169+52x
Subtract 4x^{2} from both sides.
-3x-6-4x^{2}-52x=169
Subtract 52x from both sides.
-55x-6-4x^{2}=169
Combine -3x and -52x to get -55x.
-55x-4x^{2}=169+6
Add 6 to both sides.
-55x-4x^{2}=175
Add 169 and 6 to get 175.
-4x^{2}-55x=175
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}-55x}{-4}=\frac{175}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{55}{-4}\right)x=\frac{175}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{55}{4}x=\frac{175}{-4}
Divide -55 by -4.
x^{2}+\frac{55}{4}x=-\frac{175}{4}
Divide 175 by -4.
x^{2}+\frac{55}{4}x+\left(\frac{55}{8}\right)^{2}=-\frac{175}{4}+\left(\frac{55}{8}\right)^{2}
Divide \frac{55}{4}, the coefficient of the x term, by 2 to get \frac{55}{8}. Then add the square of \frac{55}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{55}{4}x+\frac{3025}{64}=-\frac{175}{4}+\frac{3025}{64}
Square \frac{55}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{55}{4}x+\frac{3025}{64}=\frac{225}{64}
Add -\frac{175}{4} to \frac{3025}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{55}{8}\right)^{2}=\frac{225}{64}
Factor x^{2}+\frac{55}{4}x+\frac{3025}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{55}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Take the square root of both sides of the equation.
x+\frac{55}{8}=\frac{15}{8} x+\frac{55}{8}=-\frac{15}{8}
Simplify.
x=-5 x=-\frac{35}{4}
Subtract \frac{55}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}