Solve for x
x = \frac{197}{137} = 1\frac{60}{137} \approx 1.437956204
Graph
Share
Copied to clipboard
-3x-\frac{5}{12}x-\left(-17\right)=12x-4x+\frac{7}{12}
To find the opposite of \frac{5}{12}x-17, find the opposite of each term.
-3x-\frac{5}{12}x+17=12x-4x+\frac{7}{12}
The opposite of -17 is 17.
-\frac{41}{12}x+17=12x-4x+\frac{7}{12}
Combine -3x and -\frac{5}{12}x to get -\frac{41}{12}x.
-\frac{41}{12}x+17=8x+\frac{7}{12}
Combine 12x and -4x to get 8x.
-\frac{41}{12}x+17-8x=\frac{7}{12}
Subtract 8x from both sides.
-\frac{137}{12}x+17=\frac{7}{12}
Combine -\frac{41}{12}x and -8x to get -\frac{137}{12}x.
-\frac{137}{12}x=\frac{7}{12}-17
Subtract 17 from both sides.
-\frac{137}{12}x=\frac{7}{12}-\frac{204}{12}
Convert 17 to fraction \frac{204}{12}.
-\frac{137}{12}x=\frac{7-204}{12}
Since \frac{7}{12} and \frac{204}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{137}{12}x=-\frac{197}{12}
Subtract 204 from 7 to get -197.
x=-\frac{197}{12}\left(-\frac{12}{137}\right)
Multiply both sides by -\frac{12}{137}, the reciprocal of -\frac{137}{12}.
x=\frac{-197\left(-12\right)}{12\times 137}
Multiply -\frac{197}{12} times -\frac{12}{137} by multiplying numerator times numerator and denominator times denominator.
x=\frac{2364}{1644}
Do the multiplications in the fraction \frac{-197\left(-12\right)}{12\times 137}.
x=\frac{197}{137}
Reduce the fraction \frac{2364}{1644} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}