Solve for a
a=-\frac{10x}{6x+1}
x\neq -\frac{1}{6}
Solve for x
x=-\frac{a}{2\left(3a+5\right)}
a\neq -\frac{5}{3}
Graph
Share
Copied to clipboard
-6x\left(a+3\right)=-8x+a
Multiply both sides of the equation by 2.
-6xa-18x=-8x+a
Use the distributive property to multiply -6x by a+3.
-6xa-18x-a=-8x
Subtract a from both sides.
-6xa-a=-8x+18x
Add 18x to both sides.
-6xa-a=10x
Combine -8x and 18x to get 10x.
\left(-6x-1\right)a=10x
Combine all terms containing a.
\frac{\left(-6x-1\right)a}{-6x-1}=\frac{10x}{-6x-1}
Divide both sides by -6x-1.
a=\frac{10x}{-6x-1}
Dividing by -6x-1 undoes the multiplication by -6x-1.
a=-\frac{10x}{6x+1}
Divide 10x by -6x-1.
-6x\left(a+3\right)=-8x+a
Multiply both sides of the equation by 2.
-6xa-18x=-8x+a
Use the distributive property to multiply -6x by a+3.
-6xa-18x+8x=a
Add 8x to both sides.
-6xa-10x=a
Combine -18x and 8x to get -10x.
\left(-6a-10\right)x=a
Combine all terms containing x.
\frac{\left(-6a-10\right)x}{-6a-10}=\frac{a}{-6a-10}
Divide both sides by -6a-10.
x=\frac{a}{-6a-10}
Dividing by -6a-10 undoes the multiplication by -6a-10.
x=-\frac{a}{2\left(3a+5\right)}
Divide a by -6a-10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}