Evaluate
x\left(15y-2x\right)
Expand
15xy-2x^{2}
Share
Copied to clipboard
-6x^{2}+3xy-\left(x+3y\right)\left(-4\right)x
Use the distributive property to multiply -3x by 2x-y.
-6x^{2}+3xy-\left(-4x-12y\right)x
Use the distributive property to multiply x+3y by -4.
-6x^{2}+3xy-\left(-4x^{2}-12yx\right)
Use the distributive property to multiply -4x-12y by x.
-6x^{2}+3xy-\left(-4x^{2}\right)-\left(-12yx\right)
To find the opposite of -4x^{2}-12yx, find the opposite of each term.
-6x^{2}+3xy+4x^{2}-\left(-12yx\right)
The opposite of -4x^{2} is 4x^{2}.
-6x^{2}+3xy+4x^{2}+12yx
The opposite of -12yx is 12yx.
-2x^{2}+3xy+12yx
Combine -6x^{2} and 4x^{2} to get -2x^{2}.
-2x^{2}+15xy
Combine 3xy and 12yx to get 15xy.
-6x^{2}+3xy-\left(x+3y\right)\left(-4\right)x
Use the distributive property to multiply -3x by 2x-y.
-6x^{2}+3xy-\left(-4x-12y\right)x
Use the distributive property to multiply x+3y by -4.
-6x^{2}+3xy-\left(-4x^{2}-12yx\right)
Use the distributive property to multiply -4x-12y by x.
-6x^{2}+3xy-\left(-4x^{2}\right)-\left(-12yx\right)
To find the opposite of -4x^{2}-12yx, find the opposite of each term.
-6x^{2}+3xy+4x^{2}-\left(-12yx\right)
The opposite of -4x^{2} is 4x^{2}.
-6x^{2}+3xy+4x^{2}+12yx
The opposite of -12yx is 12yx.
-2x^{2}+3xy+12yx
Combine -6x^{2} and 4x^{2} to get -2x^{2}.
-2x^{2}+15xy
Combine 3xy and 12yx to get 15xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}