Solve for x
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
-3x\left(2+3x\right)=1
Combine -x and 4x to get 3x.
-6x-9x^{2}=1
Use the distributive property to multiply -3x by 2+3x.
-6x-9x^{2}-1=0
Subtract 1 from both sides.
-9x^{2}-6x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-9\right)}
Multiply 36 times -1.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-9\right)}
Add 36 to -36.
x=-\frac{-6}{2\left(-9\right)}
Take the square root of 0.
x=\frac{6}{2\left(-9\right)}
The opposite of -6 is 6.
x=\frac{6}{-18}
Multiply 2 times -9.
x=-\frac{1}{3}
Reduce the fraction \frac{6}{-18} to lowest terms by extracting and canceling out 6.
-3x\left(2+3x\right)=1
Combine -x and 4x to get 3x.
-6x-9x^{2}=1
Use the distributive property to multiply -3x by 2+3x.
-9x^{2}-6x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}-6x}{-9}=\frac{1}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{6}{-9}\right)x=\frac{1}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{2}{3}x=\frac{1}{-9}
Reduce the fraction \frac{-6}{-9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
Divide 1 by -9.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
Add -\frac{1}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=0
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
Simplify.
x=-\frac{1}{3} x=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
x=-\frac{1}{3}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}