Solve for x (complex solution)
x=\frac{-2\sqrt{2}i-2}{3}\approx -0.666666667-0.942809042i
x=\frac{-2+2\sqrt{2}i}{3}\approx -0.666666667+0.942809042i
Graph
Share
Copied to clipboard
-3x^{2}-4x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\left(-4\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-4\right)±\sqrt{16-48}}{2\left(-3\right)}
Multiply 12 times -4.
x=\frac{-\left(-4\right)±\sqrt{-32}}{2\left(-3\right)}
Add 16 to -48.
x=\frac{-\left(-4\right)±4\sqrt{2}i}{2\left(-3\right)}
Take the square root of -32.
x=\frac{4±4\sqrt{2}i}{2\left(-3\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{2}i}{-6}
Multiply 2 times -3.
x=\frac{4+4\sqrt{2}i}{-6}
Now solve the equation x=\frac{4±4\sqrt{2}i}{-6} when ± is plus. Add 4 to 4i\sqrt{2}.
x=\frac{-2\sqrt{2}i-2}{3}
Divide 4+4i\sqrt{2} by -6.
x=\frac{-4\sqrt{2}i+4}{-6}
Now solve the equation x=\frac{4±4\sqrt{2}i}{-6} when ± is minus. Subtract 4i\sqrt{2} from 4.
x=\frac{-2+2\sqrt{2}i}{3}
Divide 4-4i\sqrt{2} by -6.
x=\frac{-2\sqrt{2}i-2}{3} x=\frac{-2+2\sqrt{2}i}{3}
The equation is now solved.
-3x^{2}-4x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}-4x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
-3x^{2}-4x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
-3x^{2}-4x=4
Subtract -4 from 0.
\frac{-3x^{2}-4x}{-3}=\frac{4}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{4}{-3}\right)x=\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{4}{3}x=\frac{4}{-3}
Divide -4 by -3.
x^{2}+\frac{4}{3}x=-\frac{4}{3}
Divide 4 by -3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{4}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{8}{9}
Add -\frac{4}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=-\frac{8}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{8}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{2\sqrt{2}i}{3} x+\frac{2}{3}=-\frac{2\sqrt{2}i}{3}
Simplify.
x=\frac{-2+2\sqrt{2}i}{3} x=\frac{-2\sqrt{2}i-2}{3}
Subtract \frac{2}{3} from both sides of the equation.
x ^ 2 +\frac{4}{3}x +\frac{4}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{4}{3} rs = \frac{4}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{2}{3} - u s = -\frac{2}{3} + u
Two numbers r and s sum up to -\frac{4}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{4}{3} = -\frac{2}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{2}{3} - u) (-\frac{2}{3} + u) = \frac{4}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{3}
\frac{4}{9} - u^2 = \frac{4}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{3}-\frac{4}{9} = \frac{8}{9}
Simplify the expression by subtracting \frac{4}{9} on both sides
u^2 = -\frac{8}{9} u = \pm\sqrt{-\frac{8}{9}} = \pm \frac{\sqrt{8}}{3}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{2}{3} - \frac{\sqrt{8}}{3}i = -0.667 - 0.943i s = -\frac{2}{3} + \frac{\sqrt{8}}{3}i = -0.667 + 0.943i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}