Factor
\left(1-x\right)\left(3x+5\right)
Evaluate
\left(1-x\right)\left(3x+5\right)
Graph
Share
Copied to clipboard
a+b=-2 ab=-3\times 5=-15
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=3 b=-5
The solution is the pair that gives sum -2.
\left(-3x^{2}+3x\right)+\left(-5x+5\right)
Rewrite -3x^{2}-2x+5 as \left(-3x^{2}+3x\right)+\left(-5x+5\right).
3x\left(-x+1\right)+5\left(-x+1\right)
Factor out 3x in the first and 5 in the second group.
\left(-x+1\right)\left(3x+5\right)
Factor out common term -x+1 by using distributive property.
-3x^{2}-2x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-\left(-2\right)±\sqrt{64}}{2\left(-3\right)}
Add 4 to 60.
x=\frac{-\left(-2\right)±8}{2\left(-3\right)}
Take the square root of 64.
x=\frac{2±8}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±8}{-6}
Multiply 2 times -3.
x=\frac{10}{-6}
Now solve the equation x=\frac{2±8}{-6} when ± is plus. Add 2 to 8.
x=-\frac{5}{3}
Reduce the fraction \frac{10}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{6}{-6}
Now solve the equation x=\frac{2±8}{-6} when ± is minus. Subtract 8 from 2.
x=1
Divide -6 by -6.
-3x^{2}-2x+5=-3\left(x-\left(-\frac{5}{3}\right)\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{3} for x_{1} and 1 for x_{2}.
-3x^{2}-2x+5=-3\left(x+\frac{5}{3}\right)\left(x-1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-3x^{2}-2x+5=-3\times \frac{-3x-5}{-3}\left(x-1\right)
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}-2x+5=\left(-3x-5\right)\left(x-1\right)
Cancel out 3, the greatest common factor in -3 and 3.
x ^ 2 +\frac{2}{3}x -\frac{5}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{2}{3} rs = -\frac{5}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{3} - u s = -\frac{1}{3} + u
Two numbers r and s sum up to -\frac{2}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{3} = -\frac{1}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{3} - u) (-\frac{1}{3} + u) = -\frac{5}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{3}
\frac{1}{9} - u^2 = -\frac{5}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{3}-\frac{1}{9} = -\frac{16}{9}
Simplify the expression by subtracting \frac{1}{9} on both sides
u^2 = \frac{16}{9} u = \pm\sqrt{\frac{16}{9}} = \pm \frac{4}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{3} - \frac{4}{3} = -1.667 s = -\frac{1}{3} + \frac{4}{3} = 1.000
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}