Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-2 ab=-3=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=1 b=-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-3x^{2}+x\right)+\left(-3x+1\right)
Rewrite -3x^{2}-2x+1 as \left(-3x^{2}+x\right)+\left(-3x+1\right).
-x\left(3x-1\right)-\left(3x-1\right)
Factor out -x in the first and -1 in the second group.
\left(3x-1\right)\left(-x-1\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=-1
To find equation solutions, solve 3x-1=0 and -x-1=0.
-3x^{2}-2x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-3\right)}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2\left(-3\right)}
Take the square root of 16.
x=\frac{2±4}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±4}{-6}
Multiply 2 times -3.
x=\frac{6}{-6}
Now solve the equation x=\frac{2±4}{-6} when ± is plus. Add 2 to 4.
x=-1
Divide 6 by -6.
x=-\frac{2}{-6}
Now solve the equation x=\frac{2±4}{-6} when ± is minus. Subtract 4 from 2.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
x=-1 x=\frac{1}{3}
The equation is now solved.
-3x^{2}-2x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}-2x+1-1=-1
Subtract 1 from both sides of the equation.
-3x^{2}-2x=-1
Subtracting 1 from itself leaves 0.
\frac{-3x^{2}-2x}{-3}=-\frac{1}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{2}{-3}\right)x=-\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{2}{3}x=-\frac{1}{-3}
Divide -2 by -3.
x^{2}+\frac{2}{3}x=\frac{1}{3}
Divide -1 by -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Add \frac{1}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{2}{3} x+\frac{1}{3}=-\frac{2}{3}
Simplify.
x=\frac{1}{3} x=-1
Subtract \frac{1}{3} from both sides of the equation.
x ^ 2 +\frac{2}{3}x -\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{2}{3} rs = -\frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{3} - u s = -\frac{1}{3} + u
Two numbers r and s sum up to -\frac{2}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{3} = -\frac{1}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{3} - u) (-\frac{1}{3} + u) = -\frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{3}
\frac{1}{9} - u^2 = -\frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{3}-\frac{1}{9} = -\frac{4}{9}
Simplify the expression by subtracting \frac{1}{9} on both sides
u^2 = \frac{4}{9} u = \pm\sqrt{\frac{4}{9}} = \pm \frac{2}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{3} - \frac{2}{3} = -1 s = -\frac{1}{3} + \frac{2}{3} = 0.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.