Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
x^{2}=-\frac{2}{3}
Divide both sides by -3.
x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}i}{3}
The equation is now solved.
-3x^{2}-2=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\left(-2\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{-24}}{2\left(-3\right)}
Multiply 12 times -2.
x=\frac{0±2\sqrt{6}i}{2\left(-3\right)}
Take the square root of -24.
x=\frac{0±2\sqrt{6}i}{-6}
Multiply 2 times -3.
x=-\frac{\sqrt{6}i}{3}
Now solve the equation x=\frac{0±2\sqrt{6}i}{-6} when ± is plus.
x=\frac{\sqrt{6}i}{3}
Now solve the equation x=\frac{0±2\sqrt{6}i}{-6} when ± is minus.
x=-\frac{\sqrt{6}i}{3} x=\frac{\sqrt{6}i}{3}
The equation is now solved.