Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-2-\frac{1}{2}x^{2}=\frac{1}{2}x-1
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{7}{2}x^{2}-2=\frac{1}{2}x-1
Combine -3x^{2} and -\frac{1}{2}x^{2} to get -\frac{7}{2}x^{2}.
-\frac{7}{2}x^{2}-2-\frac{1}{2}x=-1
Subtract \frac{1}{2}x from both sides.
-\frac{7}{2}x^{2}-2-\frac{1}{2}x+1=0
Add 1 to both sides.
-\frac{7}{2}x^{2}-1-\frac{1}{2}x=0
Add -2 and 1 to get -1.
-\frac{7}{2}x^{2}-\frac{1}{2}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-\frac{7}{2}\right)\left(-1\right)}}{2\left(-\frac{7}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{7}{2} for a, -\frac{1}{2} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\left(-\frac{7}{2}\right)\left(-1\right)}}{2\left(-\frac{7}{2}\right)}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+14\left(-1\right)}}{2\left(-\frac{7}{2}\right)}
Multiply -4 times -\frac{7}{2}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-14}}{2\left(-\frac{7}{2}\right)}
Multiply 14 times -1.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{55}{4}}}{2\left(-\frac{7}{2}\right)}
Add \frac{1}{4} to -14.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{55}i}{2}}{2\left(-\frac{7}{2}\right)}
Take the square root of -\frac{55}{4}.
x=\frac{\frac{1}{2}±\frac{\sqrt{55}i}{2}}{2\left(-\frac{7}{2}\right)}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{\sqrt{55}i}{2}}{-7}
Multiply 2 times -\frac{7}{2}.
x=\frac{1+\sqrt{55}i}{-7\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{55}i}{2}}{-7} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{55}}{2}.
x=\frac{-\sqrt{55}i-1}{14}
Divide \frac{1+i\sqrt{55}}{2} by -7.
x=\frac{-\sqrt{55}i+1}{-7\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{55}i}{2}}{-7} when ± is minus. Subtract \frac{i\sqrt{55}}{2} from \frac{1}{2}.
x=\frac{-1+\sqrt{55}i}{14}
Divide \frac{1-i\sqrt{55}}{2} by -7.
x=\frac{-\sqrt{55}i-1}{14} x=\frac{-1+\sqrt{55}i}{14}
The equation is now solved.
-3x^{2}-2-\frac{1}{2}x^{2}=\frac{1}{2}x-1
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{7}{2}x^{2}-2=\frac{1}{2}x-1
Combine -3x^{2} and -\frac{1}{2}x^{2} to get -\frac{7}{2}x^{2}.
-\frac{7}{2}x^{2}-2-\frac{1}{2}x=-1
Subtract \frac{1}{2}x from both sides.
-\frac{7}{2}x^{2}-\frac{1}{2}x=-1+2
Add 2 to both sides.
-\frac{7}{2}x^{2}-\frac{1}{2}x=1
Add -1 and 2 to get 1.
\frac{-\frac{7}{2}x^{2}-\frac{1}{2}x}{-\frac{7}{2}}=\frac{1}{-\frac{7}{2}}
Divide both sides of the equation by -\frac{7}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{2}}{-\frac{7}{2}}\right)x=\frac{1}{-\frac{7}{2}}
Dividing by -\frac{7}{2} undoes the multiplication by -\frac{7}{2}.
x^{2}+\frac{1}{7}x=\frac{1}{-\frac{7}{2}}
Divide -\frac{1}{2} by -\frac{7}{2} by multiplying -\frac{1}{2} by the reciprocal of -\frac{7}{2}.
x^{2}+\frac{1}{7}x=-\frac{2}{7}
Divide 1 by -\frac{7}{2} by multiplying 1 by the reciprocal of -\frac{7}{2}.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=-\frac{2}{7}+\left(\frac{1}{14}\right)^{2}
Divide \frac{1}{7}, the coefficient of the x term, by 2 to get \frac{1}{14}. Then add the square of \frac{1}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{7}x+\frac{1}{196}=-\frac{2}{7}+\frac{1}{196}
Square \frac{1}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{7}x+\frac{1}{196}=-\frac{55}{196}
Add -\frac{2}{7} to \frac{1}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{14}\right)^{2}=-\frac{55}{196}
Factor x^{2}+\frac{1}{7}x+\frac{1}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{-\frac{55}{196}}
Take the square root of both sides of the equation.
x+\frac{1}{14}=\frac{\sqrt{55}i}{14} x+\frac{1}{14}=-\frac{\sqrt{55}i}{14}
Simplify.
x=\frac{-1+\sqrt{55}i}{14} x=\frac{-\sqrt{55}i-1}{14}
Subtract \frac{1}{14} from both sides of the equation.