Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(-4x^{2}+x+1)
Combine -3x^{2} and -x^{2} to get -4x^{2}.
-4x^{2}+x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\left(-4\right)}}{2\left(-4\right)}
Square 1.
x=\frac{-1±\sqrt{1+16}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-1±\sqrt{17}}{2\left(-4\right)}
Add 1 to 16.
x=\frac{-1±\sqrt{17}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{17}-1}{-8}
Now solve the equation x=\frac{-1±\sqrt{17}}{-8} when ± is plus. Add -1 to \sqrt{17}.
x=\frac{1-\sqrt{17}}{8}
Divide -1+\sqrt{17} by -8.
x=\frac{-\sqrt{17}-1}{-8}
Now solve the equation x=\frac{-1±\sqrt{17}}{-8} when ± is minus. Subtract \sqrt{17} from -1.
x=\frac{\sqrt{17}+1}{8}
Divide -1-\sqrt{17} by -8.
-4x^{2}+x+1=-4\left(x-\frac{1-\sqrt{17}}{8}\right)\left(x-\frac{\sqrt{17}+1}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{17}}{8} for x_{1} and \frac{1+\sqrt{17}}{8} for x_{2}.
-4x^{2}+x+1
Combine -3x^{2} and -x^{2} to get -4x^{2}.