Solve for x
x=4
x=17
Graph
Share
Copied to clipboard
-3x^{2}+63x-183-21=0
Subtract 21 from both sides.
-3x^{2}+63x-204=0
Subtract 21 from -183 to get -204.
-x^{2}+21x-68=0
Divide both sides by 3.
a+b=21 ab=-\left(-68\right)=68
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-68. To find a and b, set up a system to be solved.
1,68 2,34 4,17
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 68.
1+68=69 2+34=36 4+17=21
Calculate the sum for each pair.
a=17 b=4
The solution is the pair that gives sum 21.
\left(-x^{2}+17x\right)+\left(4x-68\right)
Rewrite -x^{2}+21x-68 as \left(-x^{2}+17x\right)+\left(4x-68\right).
-x\left(x-17\right)+4\left(x-17\right)
Factor out -x in the first and 4 in the second group.
\left(x-17\right)\left(-x+4\right)
Factor out common term x-17 by using distributive property.
x=17 x=4
To find equation solutions, solve x-17=0 and -x+4=0.
-3x^{2}+63x-183=21
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+63x-183-21=21-21
Subtract 21 from both sides of the equation.
-3x^{2}+63x-183-21=0
Subtracting 21 from itself leaves 0.
-3x^{2}+63x-204=0
Subtract 21 from -183.
x=\frac{-63±\sqrt{63^{2}-4\left(-3\right)\left(-204\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 63 for b, and -204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-63±\sqrt{3969-4\left(-3\right)\left(-204\right)}}{2\left(-3\right)}
Square 63.
x=\frac{-63±\sqrt{3969+12\left(-204\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-63±\sqrt{3969-2448}}{2\left(-3\right)}
Multiply 12 times -204.
x=\frac{-63±\sqrt{1521}}{2\left(-3\right)}
Add 3969 to -2448.
x=\frac{-63±39}{2\left(-3\right)}
Take the square root of 1521.
x=\frac{-63±39}{-6}
Multiply 2 times -3.
x=-\frac{24}{-6}
Now solve the equation x=\frac{-63±39}{-6} when ± is plus. Add -63 to 39.
x=4
Divide -24 by -6.
x=-\frac{102}{-6}
Now solve the equation x=\frac{-63±39}{-6} when ± is minus. Subtract 39 from -63.
x=17
Divide -102 by -6.
x=4 x=17
The equation is now solved.
-3x^{2}+63x-183=21
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+63x-183-\left(-183\right)=21-\left(-183\right)
Add 183 to both sides of the equation.
-3x^{2}+63x=21-\left(-183\right)
Subtracting -183 from itself leaves 0.
-3x^{2}+63x=204
Subtract -183 from 21.
\frac{-3x^{2}+63x}{-3}=\frac{204}{-3}
Divide both sides by -3.
x^{2}+\frac{63}{-3}x=\frac{204}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-21x=\frac{204}{-3}
Divide 63 by -3.
x^{2}-21x=-68
Divide 204 by -3.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-68+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-21x+\frac{441}{4}=-68+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-21x+\frac{441}{4}=\frac{169}{4}
Add -68 to \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-21x+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{21}{2}=\frac{13}{2} x-\frac{21}{2}=-\frac{13}{2}
Simplify.
x=17 x=4
Add \frac{21}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}