Solve for x
x=1.3
x=0.4
Graph
Share
Copied to clipboard
-3x^{2}+5.1x-1.56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5.1±\sqrt{5.1^{2}-4\left(-3\right)\left(-1.56\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 5.1 for b, and -1.56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5.1±\sqrt{26.01-4\left(-3\right)\left(-1.56\right)}}{2\left(-3\right)}
Square 5.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-5.1±\sqrt{26.01+12\left(-1.56\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-5.1±\sqrt{26.01-18.72}}{2\left(-3\right)}
Multiply 12 times -1.56.
x=\frac{-5.1±\sqrt{7.29}}{2\left(-3\right)}
Add 26.01 to -18.72 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-5.1±\frac{27}{10}}{2\left(-3\right)}
Take the square root of 7.29.
x=\frac{-5.1±\frac{27}{10}}{-6}
Multiply 2 times -3.
x=-\frac{\frac{12}{5}}{-6}
Now solve the equation x=\frac{-5.1±\frac{27}{10}}{-6} when ± is plus. Add -5.1 to \frac{27}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{5}
Divide -\frac{12}{5} by -6.
x=-\frac{\frac{39}{5}}{-6}
Now solve the equation x=\frac{-5.1±\frac{27}{10}}{-6} when ± is minus. Subtract \frac{27}{10} from -5.1 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{13}{10}
Divide -\frac{39}{5} by -6.
x=\frac{2}{5} x=\frac{13}{10}
The equation is now solved.
-3x^{2}+5.1x-1.56=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+5.1x-1.56-\left(-1.56\right)=-\left(-1.56\right)
Add 1.56 to both sides of the equation.
-3x^{2}+5.1x=-\left(-1.56\right)
Subtracting -1.56 from itself leaves 0.
-3x^{2}+5.1x=1.56
Subtract -1.56 from 0.
\frac{-3x^{2}+5.1x}{-3}=\frac{1.56}{-3}
Divide both sides by -3.
x^{2}+\frac{5.1}{-3}x=\frac{1.56}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-1.7x=\frac{1.56}{-3}
Divide 5.1 by -3.
x^{2}-1.7x=-0.52
Divide 1.56 by -3.
x^{2}-1.7x+\left(-0.85\right)^{2}=-0.52+\left(-0.85\right)^{2}
Divide -1.7, the coefficient of the x term, by 2 to get -0.85. Then add the square of -0.85 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.7x+0.7225=-0.52+0.7225
Square -0.85 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.7x+0.7225=0.2025
Add -0.52 to 0.7225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.85\right)^{2}=0.2025
Factor x^{2}-1.7x+0.7225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.85\right)^{2}}=\sqrt{0.2025}
Take the square root of both sides of the equation.
x-0.85=\frac{9}{20} x-0.85=-\frac{9}{20}
Simplify.
x=\frac{13}{10} x=\frac{2}{5}
Add 0.85 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}