Solve for x
x = \frac{2 \sqrt{6}}{3} \approx 1.632993162
x = -\frac{2 \sqrt{6}}{3} \approx -1.632993162
Graph
Share
Copied to clipboard
-3x^{2}=13-21
Subtract 21 from both sides.
-3x^{2}=-8
Subtract 21 from 13 to get -8.
x^{2}=\frac{-8}{-3}
Divide both sides by -3.
x^{2}=\frac{8}{3}
Fraction \frac{-8}{-3} can be simplified to \frac{8}{3} by removing the negative sign from both the numerator and the denominator.
x=\frac{2\sqrt{6}}{3} x=-\frac{2\sqrt{6}}{3}
Take the square root of both sides of the equation.
-3x^{2}+21-13=0
Subtract 13 from both sides.
-3x^{2}+8=0
Subtract 13 from 21 to get 8.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{96}}{2\left(-3\right)}
Multiply 12 times 8.
x=\frac{0±4\sqrt{6}}{2\left(-3\right)}
Take the square root of 96.
x=\frac{0±4\sqrt{6}}{-6}
Multiply 2 times -3.
x=-\frac{2\sqrt{6}}{3}
Now solve the equation x=\frac{0±4\sqrt{6}}{-6} when ± is plus.
x=\frac{2\sqrt{6}}{3}
Now solve the equation x=\frac{0±4\sqrt{6}}{-6} when ± is minus.
x=-\frac{2\sqrt{6}}{3} x=\frac{2\sqrt{6}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}