Solve for x
x=20
x = \frac{140}{3} = 46\frac{2}{3} \approx 46.666666667
Graph
Share
Copied to clipboard
-3x^{2}+200x=2800
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+200x-2800=2800-2800
Subtract 2800 from both sides of the equation.
-3x^{2}+200x-2800=0
Subtracting 2800 from itself leaves 0.
x=\frac{-200±\sqrt{200^{2}-4\left(-3\right)\left(-2800\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 200 for b, and -2800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-3\right)\left(-2800\right)}}{2\left(-3\right)}
Square 200.
x=\frac{-200±\sqrt{40000+12\left(-2800\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-200±\sqrt{40000-33600}}{2\left(-3\right)}
Multiply 12 times -2800.
x=\frac{-200±\sqrt{6400}}{2\left(-3\right)}
Add 40000 to -33600.
x=\frac{-200±80}{2\left(-3\right)}
Take the square root of 6400.
x=\frac{-200±80}{-6}
Multiply 2 times -3.
x=-\frac{120}{-6}
Now solve the equation x=\frac{-200±80}{-6} when ± is plus. Add -200 to 80.
x=20
Divide -120 by -6.
x=-\frac{280}{-6}
Now solve the equation x=\frac{-200±80}{-6} when ± is minus. Subtract 80 from -200.
x=\frac{140}{3}
Reduce the fraction \frac{-280}{-6} to lowest terms by extracting and canceling out 2.
x=20 x=\frac{140}{3}
The equation is now solved.
-3x^{2}+200x=2800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+200x}{-3}=\frac{2800}{-3}
Divide both sides by -3.
x^{2}+\frac{200}{-3}x=\frac{2800}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{200}{3}x=\frac{2800}{-3}
Divide 200 by -3.
x^{2}-\frac{200}{3}x=-\frac{2800}{3}
Divide 2800 by -3.
x^{2}-\frac{200}{3}x+\left(-\frac{100}{3}\right)^{2}=-\frac{2800}{3}+\left(-\frac{100}{3}\right)^{2}
Divide -\frac{200}{3}, the coefficient of the x term, by 2 to get -\frac{100}{3}. Then add the square of -\frac{100}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{200}{3}x+\frac{10000}{9}=-\frac{2800}{3}+\frac{10000}{9}
Square -\frac{100}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{200}{3}x+\frac{10000}{9}=\frac{1600}{9}
Add -\frac{2800}{3} to \frac{10000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{100}{3}\right)^{2}=\frac{1600}{9}
Factor x^{2}-\frac{200}{3}x+\frac{10000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{100}{3}\right)^{2}}=\sqrt{\frac{1600}{9}}
Take the square root of both sides of the equation.
x-\frac{100}{3}=\frac{40}{3} x-\frac{100}{3}=-\frac{40}{3}
Simplify.
x=\frac{140}{3} x=20
Add \frac{100}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}