Factor
\left(4-x\right)\left(3x-5\right)
Evaluate
\left(4-x\right)\left(3x-5\right)
Graph
Share
Copied to clipboard
a+b=17 ab=-3\left(-20\right)=60
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=12 b=5
The solution is the pair that gives sum 17.
\left(-3x^{2}+12x\right)+\left(5x-20\right)
Rewrite -3x^{2}+17x-20 as \left(-3x^{2}+12x\right)+\left(5x-20\right).
3x\left(-x+4\right)-5\left(-x+4\right)
Factor out 3x in the first and -5 in the second group.
\left(-x+4\right)\left(3x-5\right)
Factor out common term -x+4 by using distributive property.
-3x^{2}+17x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\left(-3\right)\left(-20\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{289-4\left(-3\right)\left(-20\right)}}{2\left(-3\right)}
Square 17.
x=\frac{-17±\sqrt{289+12\left(-20\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-17±\sqrt{289-240}}{2\left(-3\right)}
Multiply 12 times -20.
x=\frac{-17±\sqrt{49}}{2\left(-3\right)}
Add 289 to -240.
x=\frac{-17±7}{2\left(-3\right)}
Take the square root of 49.
x=\frac{-17±7}{-6}
Multiply 2 times -3.
x=-\frac{10}{-6}
Now solve the equation x=\frac{-17±7}{-6} when ± is plus. Add -17 to 7.
x=\frac{5}{3}
Reduce the fraction \frac{-10}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{-6}
Now solve the equation x=\frac{-17±7}{-6} when ± is minus. Subtract 7 from -17.
x=4
Divide -24 by -6.
-3x^{2}+17x-20=-3\left(x-\frac{5}{3}\right)\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{3} for x_{1} and 4 for x_{2}.
-3x^{2}+17x-20=-3\times \frac{-3x+5}{-3}\left(x-4\right)
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}+17x-20=\left(-3x+5\right)\left(x-4\right)
Cancel out 3, the greatest common factor in -3 and 3.
x ^ 2 -\frac{17}{3}x +\frac{20}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{17}{3} rs = \frac{20}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{6} - u s = \frac{17}{6} + u
Two numbers r and s sum up to \frac{17}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{17}{3} = \frac{17}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{6} - u) (\frac{17}{6} + u) = \frac{20}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{20}{3}
\frac{289}{36} - u^2 = \frac{20}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{20}{3}-\frac{289}{36} = -\frac{49}{36}
Simplify the expression by subtracting \frac{289}{36} on both sides
u^2 = \frac{49}{36} u = \pm\sqrt{\frac{49}{36}} = \pm \frac{7}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{6} - \frac{7}{6} = 1.667 s = \frac{17}{6} + \frac{7}{6} = 4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}