Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+\frac{7}{4}x=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+\frac{7}{4}x-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
-3x^{2}+\frac{7}{4}x-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
-3x^{2}+\frac{7}{4}x+3=0
Subtract -3 from 0.
x=\frac{-\frac{7}{4}±\sqrt{\left(\frac{7}{4}\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, \frac{7}{4} for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-\frac{7}{4}±\sqrt{\frac{625}{16}}}{2\left(-3\right)}
Add \frac{49}{16} to 36.
x=\frac{-\frac{7}{4}±\frac{25}{4}}{2\left(-3\right)}
Take the square root of \frac{625}{16}.
x=\frac{-\frac{7}{4}±\frac{25}{4}}{-6}
Multiply 2 times -3.
x=\frac{\frac{9}{2}}{-6}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{25}{4}}{-6} when ± is plus. Add -\frac{7}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{3}{4}
Divide \frac{9}{2} by -6.
x=-\frac{8}{-6}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{25}{4}}{-6} when ± is minus. Subtract \frac{25}{4} from -\frac{7}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{3}
Reduce the fraction \frac{-8}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{3}{4} x=\frac{4}{3}
The equation is now solved.
-3x^{2}+\frac{7}{4}x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+\frac{7}{4}x}{-3}=-\frac{3}{-3}
Divide both sides by -3.
x^{2}+\frac{\frac{7}{4}}{-3}x=-\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{7}{12}x=-\frac{3}{-3}
Divide \frac{7}{4} by -3.
x^{2}-\frac{7}{12}x=1
Divide -3 by -3.
x^{2}-\frac{7}{12}x+\left(-\frac{7}{24}\right)^{2}=1+\left(-\frac{7}{24}\right)^{2}
Divide -\frac{7}{12}, the coefficient of the x term, by 2 to get -\frac{7}{24}. Then add the square of -\frac{7}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{12}x+\frac{49}{576}=1+\frac{49}{576}
Square -\frac{7}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{12}x+\frac{49}{576}=\frac{625}{576}
Add 1 to \frac{49}{576}.
\left(x-\frac{7}{24}\right)^{2}=\frac{625}{576}
Factor x^{2}-\frac{7}{12}x+\frac{49}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{24}\right)^{2}}=\sqrt{\frac{625}{576}}
Take the square root of both sides of the equation.
x-\frac{7}{24}=\frac{25}{24} x-\frac{7}{24}=-\frac{25}{24}
Simplify.
x=\frac{4}{3} x=-\frac{3}{4}
Add \frac{7}{24} to both sides of the equation.