- 3 s + 27 + [ - 12 - 18 + 2 - 1 ) - 16 ^ { 2 } s
Evaluate
-259s-2
Differentiate w.r.t. s
-259
Share
Copied to clipboard
-3s+15-18+2-1-16^{2}s
Subtract 12 from 27 to get 15.
-3s-3+2-1-16^{2}s
Subtract 18 from 15 to get -3.
-3s-1-1-16^{2}s
Add -3 and 2 to get -1.
-3s-2-16^{2}s
Subtract 1 from -1 to get -2.
-3s-2-256s
Calculate 16 to the power of 2 and get 256.
-259s-2
Combine -3s and -256s to get -259s.
\frac{\mathrm{d}}{\mathrm{d}s}(-3s+15-18+2-1-16^{2}s)
Subtract 12 from 27 to get 15.
\frac{\mathrm{d}}{\mathrm{d}s}(-3s-3+2-1-16^{2}s)
Subtract 18 from 15 to get -3.
\frac{\mathrm{d}}{\mathrm{d}s}(-3s-1-1-16^{2}s)
Add -3 and 2 to get -1.
\frac{\mathrm{d}}{\mathrm{d}s}(-3s-2-16^{2}s)
Subtract 1 from -1 to get -2.
\frac{\mathrm{d}}{\mathrm{d}s}(-3s-2-256s)
Calculate 16 to the power of 2 and get 256.
\frac{\mathrm{d}}{\mathrm{d}s}(-259s-2)
Combine -3s and -256s to get -259s.
-259s^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-259s^{0}
Subtract 1 from 1.
-259
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}