Solve for p
p>-\frac{4}{7}
Share
Copied to clipboard
-3p-2-\frac{1}{2}p<0
Subtract \frac{1}{2}p from both sides.
-\frac{7}{2}p-2<0
Combine -3p and -\frac{1}{2}p to get -\frac{7}{2}p.
-\frac{7}{2}p<2
Add 2 to both sides. Anything plus zero gives itself.
p>2\left(-\frac{2}{7}\right)
Multiply both sides by -\frac{2}{7}, the reciprocal of -\frac{7}{2}. Since -\frac{7}{2} is negative, the inequality direction is changed.
p>\frac{2\left(-2\right)}{7}
Express 2\left(-\frac{2}{7}\right) as a single fraction.
p>\frac{-4}{7}
Multiply 2 and -2 to get -4.
p>-\frac{4}{7}
Fraction \frac{-4}{7} can be rewritten as -\frac{4}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}