Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

-3p^{2}-66p=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3p^{2}-66p-3=3-3
Subtract 3 from both sides of the equation.
-3p^{2}-66p-3=0
Subtracting 3 from itself leaves 0.
p=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -66 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-66\right)±\sqrt{4356-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
Square -66.
p=\frac{-\left(-66\right)±\sqrt{4356+12\left(-3\right)}}{2\left(-3\right)}
Multiply -4 times -3.
p=\frac{-\left(-66\right)±\sqrt{4356-36}}{2\left(-3\right)}
Multiply 12 times -3.
p=\frac{-\left(-66\right)±\sqrt{4320}}{2\left(-3\right)}
Add 4356 to -36.
p=\frac{-\left(-66\right)±12\sqrt{30}}{2\left(-3\right)}
Take the square root of 4320.
p=\frac{66±12\sqrt{30}}{2\left(-3\right)}
The opposite of -66 is 66.
p=\frac{66±12\sqrt{30}}{-6}
Multiply 2 times -3.
p=\frac{12\sqrt{30}+66}{-6}
Now solve the equation p=\frac{66±12\sqrt{30}}{-6} when ± is plus. Add 66 to 12\sqrt{30}.
p=-2\sqrt{30}-11
Divide 66+12\sqrt{30} by -6.
p=\frac{66-12\sqrt{30}}{-6}
Now solve the equation p=\frac{66±12\sqrt{30}}{-6} when ± is minus. Subtract 12\sqrt{30} from 66.
p=2\sqrt{30}-11
Divide 66-12\sqrt{30} by -6.
p=-2\sqrt{30}-11 p=2\sqrt{30}-11
The equation is now solved.
-3p^{2}-66p=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3p^{2}-66p}{-3}=\frac{3}{-3}
Divide both sides by -3.
p^{2}+\left(-\frac{66}{-3}\right)p=\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
p^{2}+22p=\frac{3}{-3}
Divide -66 by -3.
p^{2}+22p=-1
Divide 3 by -3.
p^{2}+22p+11^{2}=-1+11^{2}
Divide 22, the coefficient of the x term, by 2 to get 11. Then add the square of 11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+22p+121=-1+121
Square 11.
p^{2}+22p+121=120
Add -1 to 121.
\left(p+11\right)^{2}=120
Factor p^{2}+22p+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+11\right)^{2}}=\sqrt{120}
Take the square root of both sides of the equation.
p+11=2\sqrt{30} p+11=-2\sqrt{30}
Simplify.
p=2\sqrt{30}-11 p=-2\sqrt{30}-11
Subtract 11 from both sides of the equation.