Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-3p^{2}+4p+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-4±\sqrt{16-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square 4.
p=\frac{-4±\sqrt{16+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
p=\frac{-4±\sqrt{16+96}}{2\left(-3\right)}
Multiply 12 times 8.
p=\frac{-4±\sqrt{112}}{2\left(-3\right)}
Add 16 to 96.
p=\frac{-4±4\sqrt{7}}{2\left(-3\right)}
Take the square root of 112.
p=\frac{-4±4\sqrt{7}}{-6}
Multiply 2 times -3.
p=\frac{4\sqrt{7}-4}{-6}
Now solve the equation p=\frac{-4±4\sqrt{7}}{-6} when ± is plus. Add -4 to 4\sqrt{7}.
p=\frac{2-2\sqrt{7}}{3}
Divide -4+4\sqrt{7} by -6.
p=\frac{-4\sqrt{7}-4}{-6}
Now solve the equation p=\frac{-4±4\sqrt{7}}{-6} when ± is minus. Subtract 4\sqrt{7} from -4.
p=\frac{2\sqrt{7}+2}{3}
Divide -4-4\sqrt{7} by -6.
-3p^{2}+4p+8=-3\left(p-\frac{2-2\sqrt{7}}{3}\right)\left(p-\frac{2\sqrt{7}+2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2-2\sqrt{7}}{3} for x_{1} and \frac{2+2\sqrt{7}}{3} for x_{2}.
x ^ 2 -\frac{4}{3}x -\frac{8}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{4}{3} rs = -\frac{8}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{3} - u s = \frac{2}{3} + u
Two numbers r and s sum up to \frac{4}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{3} = \frac{2}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{3} - u) (\frac{2}{3} + u) = -\frac{8}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{8}{3}
\frac{4}{9} - u^2 = -\frac{8}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{8}{3}-\frac{4}{9} = -\frac{28}{9}
Simplify the expression by subtracting \frac{4}{9} on both sides
u^2 = \frac{28}{9} u = \pm\sqrt{\frac{28}{9}} = \pm \frac{\sqrt{28}}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{3} - \frac{\sqrt{28}}{3} = -1.097 s = \frac{2}{3} + \frac{\sqrt{28}}{3} = 2.431
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.