Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(-p^{2}+5p-6\right)
Factor out 3.
a+b=5 ab=-\left(-6\right)=6
Consider -p^{2}+5p-6. Factor the expression by grouping. First, the expression needs to be rewritten as -p^{2}+ap+bp-6. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=3 b=2
The solution is the pair that gives sum 5.
\left(-p^{2}+3p\right)+\left(2p-6\right)
Rewrite -p^{2}+5p-6 as \left(-p^{2}+3p\right)+\left(2p-6\right).
-p\left(p-3\right)+2\left(p-3\right)
Factor out -p in the first and 2 in the second group.
\left(p-3\right)\left(-p+2\right)
Factor out common term p-3 by using distributive property.
3\left(p-3\right)\left(-p+2\right)
Rewrite the complete factored expression.
-3p^{2}+15p-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-15±\sqrt{15^{2}-4\left(-3\right)\left(-18\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-15±\sqrt{225-4\left(-3\right)\left(-18\right)}}{2\left(-3\right)}
Square 15.
p=\frac{-15±\sqrt{225+12\left(-18\right)}}{2\left(-3\right)}
Multiply -4 times -3.
p=\frac{-15±\sqrt{225-216}}{2\left(-3\right)}
Multiply 12 times -18.
p=\frac{-15±\sqrt{9}}{2\left(-3\right)}
Add 225 to -216.
p=\frac{-15±3}{2\left(-3\right)}
Take the square root of 9.
p=\frac{-15±3}{-6}
Multiply 2 times -3.
p=-\frac{12}{-6}
Now solve the equation p=\frac{-15±3}{-6} when ± is plus. Add -15 to 3.
p=2
Divide -12 by -6.
p=-\frac{18}{-6}
Now solve the equation p=\frac{-15±3}{-6} when ± is minus. Subtract 3 from -15.
p=3
Divide -18 by -6.
-3p^{2}+15p-18=-3\left(p-2\right)\left(p-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 3 for x_{2}.
x ^ 2 -5x +6 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 5 rs = 6
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{2} - u s = \frac{5}{2} + u
Two numbers r and s sum up to 5 exactly when the average of the two numbers is \frac{1}{2}*5 = \frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{2} - u) (\frac{5}{2} + u) = 6
To solve for unknown quantity u, substitute these in the product equation rs = 6
\frac{25}{4} - u^2 = 6
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 6-\frac{25}{4} = -\frac{1}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{2} - \frac{1}{2} = 2 s = \frac{5}{2} + \frac{1}{2} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.