Factor
3p\left(4-p\right)
Evaluate
3p\left(4-p\right)
Share
Copied to clipboard
3\left(-p^{2}+4p\right)
Factor out 3.
p\left(-p+4\right)
Consider -p^{2}+4p. Factor out p.
3p\left(-p+4\right)
Rewrite the complete factored expression.
-3p^{2}+12p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-12±\sqrt{12^{2}}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-12±12}{2\left(-3\right)}
Take the square root of 12^{2}.
p=\frac{-12±12}{-6}
Multiply 2 times -3.
p=\frac{0}{-6}
Now solve the equation p=\frac{-12±12}{-6} when ± is plus. Add -12 to 12.
p=0
Divide 0 by -6.
p=-\frac{24}{-6}
Now solve the equation p=\frac{-12±12}{-6} when ± is minus. Subtract 12 from -12.
p=4
Divide -24 by -6.
-3p^{2}+12p=-3p\left(p-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 4 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}